- Problem 2: Two-Sample Inferences

A two-sample inference deals with dependent and independent inferences. In a two-sample hypothesis testing problem, underlying parameters of two different populations are compared. In a longitudinal (or follow-up) study, the same group of people is followed over time. Two samples are said to be paired when each data point in the first sample is matched and related to a unique data point in the second sample.

This problem demonstrates inference from two dependent (follow-up) samples using the data from the hypothetical study of new cases of tuberculosis (TB) before and after the vaccination was done in several geographical areas in a country in sub-Saharan Africa. Conclusion about the null hypothesis is to note the difference between samples.

The problem that demonstrates inference from two dependent samples uses hypothetical data from the TB vaccinations and the number of new cases before and after vaccination.

Table 5: Cases of TB in Different Geographical Regions

Geographical regions	Before vaccination	After vaccination
1	85	11
2	77	5
3	110	14
4	65	12
5	81	10
6	70	7
7	74	8
8	84	11
9	90	9
10	95	8

Using the Minitab statistical analysis program to enter the data and perform the analysis, complete the following:

- Construct a one-sided 95% confidence interval for the true difference in population means.
- Test the null hypothesis that the population means are identical at the 0.05 level of significance.

Click here to install Minitab Software.

In addition, in a Microsoft Word document, provide a written interpretation of your results in APA format.

Submission Details:

- Name your Minitab output file SU_PHE5020_W1_A3b_LastName_FirstInitial.mtw.
- Name your document SU_PHE5020_W1_A3c_LastName_FirstInitial.doc.
- Submit your document to the Submissions Area by the due date assigned.

