

 STUDYDADDY
 	How it Works
	Homework Answers
	
 Ask a Question
	Top Tutors
	FAQ
	Sign in

 StudyDaddy

 Programming
 I have attached the question. I have attached the question.

 Lab: Basic Debugging Techniques Overview In this lab, you will use provided code that needs to be debugged. You will have a main program, which works as intended, but calls functions from a separate module, that doesn't always work as intended. There are three functions included in this module. Syntax errors are easy to spot because they likely will cause the program to fail. Logical errors, on the other hand, will result in incorrect outputs that are not detected by Python, i.e. the program will still run. It is up to you to find these. You have already done a bit of debugging in the Exams, as well as in your own code using Spyder. You will learn some more advanced techniques before moving on to debug the included program. Lab Activities • Exercise 1: Debugging in Spyder • Exercise 2: Debug the debug.py functions Page 2 Exercise 1: Debugging in Spyder Overview: Get used to Breakpoints and Stepping – two of the most useful tools for debugging. 1. Open the debug_lab.py file. Make sure debug.py is saved in the same directory. • You can drag the file directly into Spyder's editor window, use the Open button, or right - click the file and select "Open with…" and navigate to Spyder. 2. Set a Breakpoint at line 24 • Double click in the left -hand margin of the editor window, near or on the line number. • You should see a red dot appear, this is a breakpoint . • This allows the code to "halt" at the specified point so that you can continue at your own pace and investigate what the code is doing. • Examine the code contained in the section for Exercise 1. • Click the "variable explorer" tab in the upper - right window of Spyder – where you read the docstrings . Select all existing variables there by pressing Ctrl+A, then rightclick and remove them all. • If none e xist, just leave it as -is. 3. Start debugging using Spyder. • Hit the blue play/pause button instead, to the right. This is the debug button. • Usually you hit the green "play" button in the toolbar to execute a program. This time, the program knows it is being debugged and will adhere to all of your Page 3 breakpoints. • Check the console window. It should display lines 15, 16 and 17, with arrows pointing to 16.
 This indicates the debugger has stopped at line 16. It shows you the next piece of code to be executed (line 17) as well as the code previously executed (line 16). • Also notice that line 16 is highlighted by the debugger, to show that code is paused there. • When debugging in Spyder, the program will always stop at the top of the code before proceeding. 4. Continue the program code to your breakpoint • Hit the blue fast -forward button(>>), next to the stop/square button, in the toolbar. • Hovering your mouse over the button describes what it does. • Since we have an input, the code has stopped there. Check the console and continue. • Now you should be stopped at your breakpoint on line 24, as indicated by highlighting in the editor and the console window. • Use the blue "step" button, located to the right of the play/pause debug button, to execute the highlighted line (24) and move to the next. • We have just assigned a value to the variable tot . Go back to the variable explorer. Notice our variable is here, along with its value. This is very useful for keeping track of what variables contain what values at any given point. • Keep t he program paused at line 25 Page 4 5. Assign a different value to tot • Another great thing about debugging, we can change variable values or execute functions on them, or whatever, while the program is paused . • To test this, go to the console window, and at the ipdb > prompt, type: • tot = 10 • Hit enter, and check the variable explorer. Tot should have a new value. • Hit the step button twice, which should now execute the print function on line 26 – tot 's new value should be reflected here as well. • You can even print(tot) or import math and then math.sqrt(tot) if you desired! It executes code just like the interpreteter. • This is useful for attempting different values during execution – but long term fixes must be implemented in the actual code. • Continue stepping through the code. To exit the debugger, hit the Stop button (the blue square). If you'd like the code to just continue, use the >> button. Page 5 Exercise 2: Debug the debug.py functions Overview: Now that you have the basics down, use them to solve some simple bugs! 1. Try running the program as -is • Try running the program and see if it works, or where it fails. • If desired, you can delete or comment out all of Exercise 1 so that it doesn't interfere. 2. Set breakpoints at the lines that call functions from the debug module • You should have some idea what function caused failure, set a breakpoint there. • Start the debugger as before. • Continue on until the line you set the breakpoint at. 3. Step in to the debu g.py functions • Once the code is paused, use the "Step in" button, located to the right of the "Step" button. • This behaves similar to the step button, except it takes you inside of the function located at the breakpoint! Now you can see the code contained w ithin the module, exactly as it is being executed. • Use the variable explorer, and the normal step button, to try and locate the source of the error. • Using the techniques learned so far, continue debugging the rest of the program! • Hint: #Function 3 does not work properly but it may appear to. Check the logic!

 GET YOUR EXPERT ANSWER ON STUDYDADDY

 Post your own question
and get a custom answer

 GET ANSWER

 [image: LET'S ORDER THE BEST ASSIGNMENT SERVICES]

 Have a similar question?

 Continue to post
 Continue to edit or attach image(s).

 	
 [image: Fast and convenient]
 Fast and convenient

 Simply post your question and get it answered by professional tutor within 30 minutes. It's as simple as that!

	[image: Any topic, any difficulty]
 Any topic, any difficulty

 We've got thousands of tutors in different areas of study who are willing to help you with any kind of academic assignment, be it a math homework or an article.

	
 [image: 100% Satisfied Students]
 100% Satisfied Students

 Join 3,4 million+ members who are already getting homework help from StudyDaddy!

 	Homework Answers
	Ask a Question
	Become a tutor
	FAQ
	Contact Us
	Privacy Policy
	DMCA
	Terms of Use
	Sitemap

 Copyright © 2024 StudyDaddy.com

 Worbert Limited - All right reserved.

 20 Christou Tsiarta Elma 2, 22, 1077, Nicosia, Cyprus

