CSE 413, Spring 2011, Assignment 4
Due: Tuesday 3 May, 11:00PM

Set-up: For this assignment, edit a copy of hwdskeleton.scm, which is on the course website. In particular,
replace occurrences of "CHANGE" to complete the problems. Do not use any mutation (set!, set-car!, etc.)
anywhere in the assignment.

Overview: This homework has to do with MUPL (a Made Up Programming Language). MUPL programs
are written directly in Scheme (using Pretty Big in DrRacket) using the structs defined at the beginning of
hwé4skeleton.scm, according to this syntax definition:

e If s is a Scheme string, then (make-var s) is a MUPL expression (a variable use).
e If n is a Scheme integer, then (make-int n) is a MUPL expression (a constant).
e If e¢; and ey are MUPL expressions, then (make-add e; e3) is a MUPL expression (an addition).

e If 51 and sy are Scheme strings and e is a MUPL expression, then (make-fun s; s; e) is a MUPL
expression (a function). In e, s1 is bound to the function itself (for recursion) and s is bound to the
(one) argument. Also, (make-fun #f s, e) is allowed for nonrecursive functions.

e If ey, €2, and e3, and e4 are MUPL expressions, then (make-ifgreater e; es e3 ey) is a MUPL expres-
sion (a conditional meaning e; is strictly greater than e).

e If ¢; and ey are MUPL expressions, then (make-app e; e3) is a MUPL expression (a function applica-
tion).

e If s is a Scheme string and e; and e; are MUPL expressions, then (make-mlet s e; ey) is a MUPL
expression (a let expression) where the value of e; is bound to s in the evaluation of es.

e If ¢; and ey are MUPL expressions, then (make-apair e; es) is a MUPL expression (a pair-creator).
e If e; is a MUPL expression, then (make-fst e;) is a MUPL expression (getting part of a pair).

e If e is a MUPL expression, then (make-snd e;) is a MUPL expression (getting part of a pair).

e (make-aunit) is a MUPL expression (holding no data, much like () in ML or Scheme).

e If e; is a MUPL expression, then (isaunit e;) is a MUPL expression (testing for (make-aunit)).

e (make-closure env f) isa MUPL value where f is MUPL function (an expression made from make-fun)
and env is an environment mapping variables to values. Closures do not appear in source programs;
they result from evaluating functions.

A MUPL value is an integer constant (wrapped in make-int), a closure, unit, or a pair of values. Notice that
like in Scheme we can build list values out of nested pair values that end with unit.

You should assume MUPL programs are syntactically correct (e.g., do not worry about wrong things like
(make-int "hi") or (make-int (make-int 37)). But do not assume MUPL programs are free of “type”
errors like (make-add (make-aunit) (make-int 7)) or (make-fst (make-int 7)).

Warning: This assignment is difficult because you have to understand MUPL well and debugging an inter-
preter is an acquired skill. Start early.

1. (Implementing the language) Write a MUPL interpreter, i.e., a Scheme function eval-prog that takes
a MUPL program p and either returns the MUPL value that p evaluates to or calls Scheme’s error if
evaluation encounters a run-time MUPL type error or unbound MUPL variable.

A MUPL expression is evaluated under an environment (for evaluating variables, as usual). Use a list
of pairs for the environment (starting with ()) so that you can use the provided envlookup function.
Here is an informal semantics for MUPL expressions:



e All values (including closures) evaluate to themselves. For example, (eval-prog (make-int 17))
would return (make-int 17), not 17.

e A variable evaluates to a value according to the environment.

e An addition evaluates its subexpressions and assuming they both produce integers, produces the
integer that is their sum. (Note this case is done for you to get you pointed in the right direction.)

e Functions are lexically scoped: A function evaluates to a closure holding the function and the
current environment.

e An ifgreater evaluates its first two subexpressions to values v; and v respectively. Assuming
both values are integers, it evaluates its third subexpression if v; is a strictly greater integer than
vg else it evaluates its fourth subexpression.

e An application evaluates its first and second subexpressions to values. If the first is not a closure,
it is an error. Else, it evaluates the closure’s function’s body in the closure’s environment extended
to map the function’s name to the closure (unless the name field is #£) and the function’s argument
to the second value of the application.

e An mlet expression evaluates its first expression to a value v. Then it evaluates the second
expression to a value, in an environment extended to map the name in the mlet expression to v.

e A pair expression evaluates its two subexpressions and produces a (new) pair holding the results.

e A fst expression evaluates its subpexpression. It is an error if the result is not a pair of values.
Else the result of the fst expression is the el field in the pair.

e A snd expression is the same as a fst expression except the result is the e2 field of the pair.

e An isaunit expression evaluates its subpexpression. If the result is unit, then the result for the
isunit expression is the integer 1, else the result is the integer 0.

Hint: The app case is definitely the most complicated. In the sample solution, no case is more than 12
lines and several are 1 line.

2. (Expanding the language) MUPL is a small language, but we can write Scheme functions that act like
MUPL macros. They produce MUPL programs that other code could later pass to eval-prog. These
Scheme functions you write produce MUPL expressions that you could have written by hand, i.e., they
are “macros for MUPL.” In implementing these Scheme functions, do not use make-closure (which is
only used internally in eval-prog) nor eval-prog (we are creating a program, not running it).

(a) Write a Scheme function ifunit that takes three MUPL expressions ej, ez, and eg. It returns a
MUPL expression that when run evaluates e; and if the result is unit then it evaluates e; and that
is the overall result, else it evaluates ez and that is the overall result. Sample solution: 1 line.

(b) Write a Scheme function mlet* that takes a list of lists ((s1, €1) ... (s, €;) ... (Sn, €,)) and a
final MUPL expression e, 1. In each pair (s;, e;), the s; is a string and e; is a MUPL expression.
mlet* returns a MUPL expression whose value is e, 4] evaluated in an environment where each
s; is bound to the result of evaluating the corresponding e; for 1 < ¢ < n. The bindings are
done sequentially, so that each e; is evaluated in an environment where s; through s;_; have been
previously bound to the values e; through e;_;.

(¢) Write a Scheme function ifeq that takes four MUPL expressions ej, es, e3, and e4 and returns a
MUPL expression that acts like ifgreater except es is evaluated if e; and es are equal integers.
Unfortunately, MUPL does not have hygiene and we want to evaluate e; and es exactly once, so
assume the MUPL expressions do not use the variables _x and _y (i.e., you can use these variables
to implement ifeq). Sample solution is 7 (short) lines.

3. (Using the language) We can write MUPL expressions directly in Scheme using the constructors for the
structs and (for convenience) the functions we wrote in the previous problem.



(a) Bind to the Scheme variable mupl-map a MUPL function that acts like map (as we used in Scheme).
Your function should be curried: it should take a MUPL function and return a MUPL function that
takes a MUPL list and applies the function to every element of the list returning a new MUPL list.
A mupL list is simply unit or a pair where the second component is a MUPL list. Sample solution:
7 lines.

(b) Bind to the Scheme variable mupl-mapAddN a MUPL function that takes an integer ¢ and returns
a MUPL function that takes a list of integers and returns a new list that adds i to every element
of the list. Use mupl-map (a use of mlet is given to you to make this easy). Sample solution is 4
lines (including the line given to you).

4. Challenge Problem: Write a second version of eval-prog (bound to eval-prog2) that builds
closures with smaller environments: When building a closure, it uses an environment that is like the
current environment but only holds variables that are free variables in the function part of the closure.
Note: You will have to write a Scheme function that takes a MUPL expression and computes its free
variables.

For full challenge-problem credit, use memoization (yes, you should use mutation for this) to avoid
computing any function’s free variables more than once.

Warning: The sample solution does not include a solution to the extra credit.

Turn-in Instructions
e Put all your solutions in one file, hw4.scm and turn in that file using the regular online dropbox.

e The first line of your .scm file should be a Scheme comment with your name and the phrase CSE 413,
Spring 2011, Homework 4.



