

 STUDYDADDY
 	How it Works
	Homework Answers
	
 Ask a Question
	Top Tutors
	FAQ
	Sign in

 StudyDaddy

 Computer Science
 IT650 Labs IT650 Labs

 HANDS ON DATABASE by Steve Conger © 2010 Hands ON Database 2 Introduction Many students taking an introductory database course need hands -on experience. Typically they are under pressure to finish quickly with a certificate or degree and get to work. They need to get actual practice in the process of designing and developing databases that they can apply in their future employment. They need to create tables, enter data, and run SQL queries. This book is designed for them. Hands on Database: an Introduction to Database Design and Development focuses on the process of creating a database. It guides the student through the initial conception of the database. It covers gathering of requirements and business rules, the logical and physical design and the testing of the database. It does this through a continuous narrati ve that follows a student, Sharon, as she designs and constructs a database to track the tutoring program at her school. It shows some of her missteps as well as her successes. Students get hands -on experience by doing practices and developing scenarios th at parallel the narrative. After completing this book student s will have a good sense of what is involved in developin g and creating a database. Below is a list of the book outcomes. A student who has completed this book will be able to give a general def inition of a relational database to identify a variety of ways to gather database requirements to define business rules for a database to create an Entity design for a database Hands ON Database 3 to normalize a design up to third normal form to develop a database in a given DBMS to run SQL Queries against sample data to test requirements and business rules to define the general security context of a database and its users to document the process of database design and development The Scenario Approach The scenario approach i s at the heart of the book. It informs both the narrative and the exercises. A scenario in its essence is a story problem. It provides a context from which to work. It is much easier for a student to understand database design if he or she sees it as a so lution to a particular set of problems. There is an emphasis on defining business rules and then testing the database design against those rules. The scenarios also provide a sense of process. They give the student some guidance in how to go about defining and developing a database. I would argue that even a computer science student could benefit from this approach. It would allow them to experience how the concepts they have learned can be applied to the actual development process. The scenario that makes up the body of the book describes Sharon , a database student, in the process of creating a database to manage the school’s tutoring program. She encounters several problems. The way that tutoring sessions are scheduled is awkward and inefficient. The repor ts that the manager of the program needs to make are difficult and time consuming to put together. It is also difficult, at times, to track the tutor’s hours. Sharon sees a database as a solution to these problems and sets abo ut defining its requirements, designing it, and building a prototype. She enters some sample data and then Hands ON Database 4 tests the database using SQL to enter and retrieve the information required. Finally she looks carefully at the security issues inherent in the database. At the end of each chapte r, after the practices, there are four additional scenarios for the student to develop . The Wild Wood Apartments scenario involves creating a database manage a chain of apartment buildings. Vince’s Vintage Vinyl Record shop offers a scenario of a small sho p owner who needs a database to handle his inventory, sales and purchases. Grandfield College leads students through the process of making a database to track what software the school owns, the licensing for that software, on what machines the software is installed, and what users have access to those machines. The WestLake Research Hospital scenario involves creating a database to track a double blind drug study for a new antidepressant. The scenarios are meant to be complex enough to keep the student inv olved, but simple enough not to overwhelm the novice. Each scenario presents different challenges. Students could work on some or all the scenarios or they could be broken into groups with each group assigned one of the scenarios. The scenarios are open e nded, that is, they offer room for student creativity and innovation. They and the instructor are free to define many of the parameters and business rules as they proceed. But each scenario, in each chapter, has specific deliverables that help keep the stu dents on track. Other Features Process Driven The book models the process of developing a database from the beginning through the final stages. It provides students with tools and techniques for discovering requirements and business rules. It also provides them with suggestions for organizing and managing all the complex details that go into developing a database. The book emphasizes the need to understand the data and the relationships Hands ON Database 5 among the data. It shows them the value of carefully designing a databa se before actually implementing it. Then when the database is first developed, it emphasizes the need to test it, to make sure it meets the requirements and business rules before deploying the database. Finally it emphasizes the need to secure a database a gainst both accidental and intentional threats. Normalization Normalization is an important but complex issue in database development. Anyone who works with databases is expected to have some knowledge of normalization. For this reason, I believed it important to introduce the students to the concepts and vocabulary of normalization. But, b ecause this is an introductory book focused on the process of development and design, I only discussed the first three Normal Forms. I have found that most databases that achieve at least the third normal form are functional if not optimal in design. That being said, I do believe anyone working in databases should become familiar with all the normal forms and principles of normalizations. =n the “Things to Look Up” segment of Chapter Four, I direct students to look up the other normal forms and pick one of them to explain to other students. Also, in Appendix Four Common Relational Patterns , the last example shows an ERD of a database that has been normalized beyond Thi rd Normal Form. SQL Chapter Seven in Hands on Database contains an extensive introduction to SQL. It covers SELECT statements, of course, using a variety of criteria, as well as using scalar functions, especially date and time functions, and various aggre gate functions. Inner and outer joins are discussed. INSERT, UPDATE and DELETE statements are introduced. The chapter also illustrates the use of Views and provides an example of a stored procedure and a trigger. Chapter Eight looks at stored procedures in terms of how they can be used to protect data integrity and security. SQL commands related to Logins and permissions are also introduced. Hands ON Database 6 Perhaps more importantly than the specific SQL commands presented is the context in which they are introduced. In the text Sharon uses the SQL to test the requirements and business rules of the TutorManagement database. In the scenarios Students use the SQL to test the requirements and business rules of the databases they have created. In Chapter Eight they see SQL as a tool for securing a database. By presenting it in this way, students see SQL as a vital part of database development and not just an academic exercise. Security Security issues are discussed at several points in the book. It is brought into considerati on during the information gathering phases in Chapters Two and Three. But it is dealt with in detail in Chapter Eight. Chapter Eight attempts to show the student a structured approach to security. It looks at each user of the database and creates a table that delineates exactly what permissions that user needs on each object in the database. It applies a similar technique for analyzing threats to the database. Then it introduces the concept of roles as collections of permission. It shows how a developer c ould create an application layer of views and procedures and then assign roles permissions to those objects rather than to the underlying tables. Finally, the chapter discusses the importance of disaster management and of creating a set of policies and pro cedures for recovering from any conceivable disaster. Software used by the book The book uses Microsoft SQL Express 2008 R2 for the database and Microsoft Visio 2010 for the database diagramming. The SQL Express software is offered free from Microsoft . At the time of writing this Introduction SQL Express was available at http://www.microsoft.com/express/Database/ . This is, of Hands ON Database 7 course subject to change. But one can always go to the Microsoft site an d type SQL Server Express in the Bing search box. This will list the current download URL. I selected SQL Server Express because it is readily available and because it provides a more realistic and complete Database Management System experience than Micr osoft Access which is often used in classroom settings. SQL Server Express lets the students experience managing multiple databases in a single management environment. The SQL Express Management Studio also contains a query analyzer that allows students to easily run SQL queries and view the results. Unlike Access, SQL Server Express supports Stored Procedures and Triggers. Finally, again unlike Access, SQL Express provides a rich set of security features that are more typical of commercial database managem ent systems. If, however, an instructor prefers or must use Microsoft Access, Appendix one explains how to substitute it for SQL Server. The appendix notes the variations in practices and examples in each chapter required for the adaption. Other database software such as MySQL or Oracle could also be adopted for use with the book. Although the book uses SQL Server Express, its focus is on the process of developing and designing a database. The principles of this process are applicable to any DBMS. Microso ft Visio is readily available to students for schools that belong to the Microsoft Developers Network Academic Alliance (MSDNAA). It can also be purchased at a significant discount from places like the Academic Superstore and other academic outlets. Visio offers a range of tools and templates that help make diagramming and modifying diagrams easy and enjoyable for students. Appendix Three offers additional instruction in how to use the Database Model template in Visio 2010. Of course, other modeling softwa re could be easily substituted, or students could be asked to simply draw their models on graph paper. What is important are the concepts, not the particular tools. Hands ON Database 8 Chapter Conventions Each c hapter contains several elements other than the narrative about Sharon. These elements are meant to provide greater depth and to provoke the student to think about some of the broader implications of the material. Things You Should Know These extended sections provide background and descriptions of various aspects of database development and design. In many ways they function like the more traditional textbook. They provide definitions, explanations and examples that provide a deeper, more comprehensive context to the things that Sharon is doing in the narrative. Things to Think A bout These are sidebars that invite the student to consider questions about the processes or topics under discussion. The questions in these sections do not have definite answe rs. They are meant to encourage thought and discussion. Cautions Cautions are found in the margins of the text. Their purpose is to warn the students about potential mistakes or common errors. Documentation These sections are found at the end of each chapter. They provide a summary of how a student would go about documenting the activities conducted during the chapter . Things to Look up These are also found at the ends of the chapters. They guide students t o other resources and topics not fully covered in the book. Hands ON Database 9 Vocabulary Vocabulary is an important part of any discipline. Anyone who wants to work in the database field will be expected to know and understand certain terms. Vocabulary words are highlight ed in margins and are repeated in a exercise at the end of each chapter where the student is asked to match the word with the definition. SQL terms are listed in Tables at the ends of Chapters Six and Eight. The terms are also defined in a Glossary at the end of the book. Practices Practices are at the end of each chapter. They are designed to give each student hands on experience with the materials of the chapter. Most practices are self -contained but some do build on each other. In particular the practic es for Chapter Five and Chapter Six are related. In Chapter Five the students build a Pizza database and in Chapter Six they query that database with SQL. Scenarios As mentioned earlier, Scenarios are the life of the book. There are four scenarios which s tudents build on throughout the book. Their purpose is to provide students with the full experience of developing a database from identifying the initial concept to testing the fully built database. For students, the most effective use of these scenarios w ould be to follow one or more of the scenarios throughout the entire term. Outline: The book contains Eight Chapters, Four Appendixes and a glossary. It is meant to be just long enough to be covered fully in a single term. Below is an outline of the book with a summary of the chapter narrative and a list of the outcomes for that chapter. Hands ON Database 10 Chapter One: Who Needs a Database? Narrative: Sharon, a student at a community college, applies to become a tutor for Database related subjects at the school. She disco vers they use spiral notebooks and spreadsheets to manage the tutoring information. She suggests to the supervisor that they could benefit from a database and offers to build it. The supervisor agrees to the project. Sharon interviews her and gets a sense of what the overall database will entail and drafts a statement of scope. She and the supervisor discuss the statement and make some modifications. Outcomes: Define relational databases Understand the position of Relational Databases in the history of Da tabases Identify major Relational Database Management Systems Identify main characteristics of Relational databases Understand SQL’s role in relational database Recognize some indications of where a database could be useful Define a statement of scope for a given database scenario Chapter Two: Gathering Information Narrative: Now that she has the scope of the database, Sharon begins to gather information about the data the database will need to capture and process. First she looks at the spiral notebooks that have been used to schedule tutoring sessions. She looks also looks at the spreadsheets the supervisor develops for reports and other related documents. Then she arranges an interview with several of the tutors, an additional interview with the supervi sor, and creates a questionnaire for students who use the Hands ON Database 11 tutoring services. Finally she spends an afternoon in the computer lab, observing how students schedule tutoring and how the actual tutoring sessions go. Outcomes: Review documents to discover relevant entities and attributes for database Prepare interview questions and follow up Prepare questionnaires Observe work flow for process and exceptions Chapter Three: Requirements And Business Rules Narrative: Having gathered all this information, Shar on must figure out what to do with it. She searches through her notes for nouns and lists them. Then she looks at the lists to see if there are additional topics, or subjects. Then she groups which nouns go with which topics. For each topic area, Sharon identifies some candidate keys. Next she looks through her notes to determine what the business rules of the tutoring program are. She lists the rules and makes notes for further questions. The rules seem complex and Sharon remembers something from a systems analysis class about UML diagrams called Use Case Diagrams. She uses these diagrams to graphically show how each actor —tutor, student, and supervisor —interact with the database. Outcomes: Use nouns from notes and observations to discover database elements Group elements into entities and attributes Define business rules Develop Use Case diagrams to model requirements Hands ON Database 12 Chapter Four: Database Design Narrative: Sharon is ready to design the database. She looks at her topics lists and diagrams an initial set o f Entities, using Visio. She analyses the relationships among the entities adding linking tables wherever she finds a many -to-many relation. Then she adds the other items from her list to the appropriate Entities as attributes. For each attribute she assig ns a data type. She reviews the design to ensure that she has captured all the data and the business rules. Use the database modeling template in Microsoft Visio Create Entities and add attributes Determine the appropriate relationship between entities Res olve many to many relationships with a linking table Chapter Five: Normalization and Design Review Narrative: Now, with the help of an instructor, Sharon checks to make sure the database conforms to the rules of normalization. She reviews the database thus far with her supervisor. Outcomes: Evaluate entities against first three normal forms Adjust the relational diagram to reflect normalization Hands ON Database 13 Chapter Six: Physical Narrative: Sharon builds a prototype of the database, creating all the tables and setting up the relationships. (SQL Server Express –though = could other DBMS’s also.) When she has it set up she en ters 5 or 10 rows of sample data so she can test the database. Outcomes: Implement a physical design of the database based on the logical ERDs. Choose appropriate data types for columns Enter sample data into tables Chapter Seven: SQL Narrative: Sharon wri tes some SQL queries to see if she can get the needed information out of the database. She tests for database requirements Outcomes: Name the main events in the development of SQL Run SELECT queries with a variety of criteria Join two or more tables in a q uery Use the Aggregate Functions COUNT, AVG, SUM, MIN, and MAX INSERT, UPDATE and DELETE records Use SQL to test business rules Hands ON Database 14 Chapter Eight : Is it Secure? Narrative: In this chapter Sharon looks at the security needs of the database. It is important to give everyone the access that they require to do the things they need to do. But it is also important to protect the database objects and data from either accidental or intentional damage. Sharon discovers that security is a complex and requires careful pl anning. Outcomes Analyze security needs and restrictions for users of the database Analyze threats to database integrity Understand the concepts of authentication and authorization Create logins and users Create roles Appendixes Microsoft Access A quick overview of using Microsoft Access instead of SQL Server with the book It looks at each chapter and shows how you would use Access and what adjustments you will need to make to the practices and scenarios Visio An overview of the Visio environment with a s pecial focus on the database templates Hands ON Database 15 SQL Server Express An overview of how to use the SQL Server Management Studio to create and access databases in Sql Server Express Common Relational Patterns A review of some of the most common relational patterns stu dents will encounter in database design such as the Master /Detail relation, weak entities, linking tables, etc.. Glossary of Terms Glossary of all vocabulary terms Conclusion There are many good database textbooks, but they tend to be more theoretical th an hands -on. Their audience is the computer science student who needs to understand the deeper, mathematical subtleties of entity relationships, who needs to understand the ways that various database management systems process physical files or how they op timize queries. These are valuable skills, but these books contain far too much information for a student to absorb in a term, and too little hands -on practice for the student who is looking for a practical introduction to database. Hands On Database is designed to be that practical introduction. Hands ON Database 16 Chapter One : Who Needs a Database Overview of Relational Databases and their Uses In this chap ter we meet Sharon, a college student who is working toward a degree in Database Development and Administration. She signs u p to become a tutor and realizes that the tutoring program is in desperate need of a database to track tutoring sessions . She volunteers to develop it and after some discussions defines a statement of work for the database. Chapter Outcomes Define relational databases Understand the posi tion of Relational Databases in the history of Databases Identify major Relational Database Management Systems Identify main characteristics of Relational databases Understand SQL’s role in relational database Recognize some indications of where a database could be useful Define a statement of work for a given database scenario The Situation Sharon is a stud ent taking databa se classes . She is near the end of her program and has done quite well. Like any student, she could really use some extra money and has decided to inquire about tutoring. She has Relational Database — a type of database that uses “relations,” tables, to store and relate tables.
 See “Things You Need to Know 1” Hands ON Database 17 noticed that many students seem to struggle with relational database concepts , particularly in the early classes , and she is fairly sure there would be a demand for her services. The administrator of the tutoring program at the col lege is named Terry Lee. Terry invites Sharon into her office and offers her a seat. She smiles. “So you want to tutor?” “Yes. = think = would be good at it.” “What subjects do you think you could tutor?” “= was thinking especially of database related topics. = can do relational design and SQL. I think I could tutor M icrosoft Access, Sql Server and even other Database Management Systems. = can also do some database programming.” Terry nods. “That’s good. We do have some requests for tutoring in those areas but so far no one to provide the tutoring. Before you can begin, you will need to get recommendations from two instructors who teach in the area you want to tutor. Also you will need to do a short training session.” Sharon smiles, “That’s no problem.” “Good.” Terry rises from her seat. “Let me show you how things work.” Things You Sho uld Know Databases Relational Design involves organizing data into tables or entities and then determining the relations among them. SQL is the language Relational Databases Use to create their objects and to modif y and retrieve data. Hands ON Database 18 A database is, at its simplest level, a collection of related data. =t doesn’t have to be electronic. The card catalogs that libraries used to have were certainly databases. A scientist’s spiral notebook where he or she keeps notes an d observations could be considered a database, so too could a phone or address book. When we say “database,” though, we usually mean electronic databases, databases that run on computers. Flat File Databases The simplest form of database is the flat file database. Flat files usually consist of a file which store data i n a structured way. A common format for flat file databases is the delimited file. In a delimited file, each piece of data is separated from the next piece by some “delimiter,” often a comma or a tab. The end of a row is marked by the new line character (usually invisible). It is important, if the file is to be read correctly, that each row contain the same number of delimiters. Another kind of flat data file is the fixed width data file. In these all the columns share a fixed width in characters. These flat files can be read by a computer program and manipulated in various ways, but they have almost n o protections for data integrity and they often contain many redundant elements. Spreadsheets, such as Excel, can also be used as flat file databases. Spreadsheets offer a great deal more functionality than simple delimited files. Cells can be given a data type such as “numeric” or “date time.” This helps ensure that all the entries in a given column are of the same type. You can also define valid ranges for Redundancy — refers to storing the same data in more than one place in the database Data Integrity — refers to the accuracy an d the correctness of the data in the database Delimited files have some sort of character separating columns of data. The delimiter is often a comma or tab, but can be any non alphanumeric character. in Fixed Length files the length in characters of each column is the same Hands ON Database 19 data (For inst ance, you can stipulate that a valid term grade is between the numbers 0 and 4) Spreadsheets usually contain data tools that make it possible to sort and group data. Most spreadsheets also contain functions that allow the user to query the data. But despit e these enhancements spreadsheets still share many of the redundancy and data integrity probl ems of other flat file formats. Figure 1: Delimited Text Example Hands ON Database 20 Figure 2: Excel Spreadsheet Hierarchical Dat abases The most common database model before the relational model was the hierarchical database.
 Hierarchical databases are organized in a tree like structure. In it one parent table can have many child tables, but no child table can have more than one par ent. This sounds abstract, and it is. One way to visualize it is to think of the Windows (or, for that matter, the Mac or Linux) file system. The file system has a hierarchical structure. You have a directory, under which there can be sub directories and i n those subdirectories can be other subdirectories or files. You navigate through them by following a path . Hands ON Database 21 C: \Users \ITStudent \Documents \myfile.txt This tree like organization is very logical and easy to navigate but it does present some of the same problems of redundancy, data Integrity and comparability of data . It is not uncommon for the same data to be repeated in more than one place in the tree.
 Any time data is repeated there is a risk of error and inconsistency. It also can be very difficult to compare a piece of data from one branch of the database with a piece from an entirely different branch of the database. Relational Databases By far, the most popular type of database for at least the last 30 years is the relational database . The idea for relational Databases came from a man na med Edgar F. Co dd in 1970 . He worked for IBM and he wrote a paper on, at that time, a new theoretical design for databases. This design would be based on the mathematics of set theory and predicate logic. He formulated the basics of the relational design in 12 rules (Ac tually there are 13 rules. Like any good computer engineer, Codd begins his numbering with 0.) Briefly, in the relational model data would be organized into relations or tables and these relations would define the relationships among themselves by means o f repe ating an attribute or column Keys — in relational databases each table usually has one column designated as a primary key . This key uniquely identifies each row in the table. This primary key becomes a foreign key when it is repeated in an another table to create a link between the tables Things to think about Hierarchical databases are still in use in many institutions. This is especially true of large institutions such as banks and insurance companies that adopted database technologies early. These institutions invested heavily in the development of these dat abases and have committed decades of data to their files.
 Although database technologies have improved, they are reluctant to commit the time and money, and to incur the risk of redeveloping their databases and of translating their vast stores of existing data into new formats. The basic philosophy is, if it still works, let well enough alone. Most companies are conservative about their databases, for understandable reasons. What do you think companies like Microsoft or Oracle have to do to convince compan ies to upgrade to their newest database products? Hands ON Database 22 from one table in another table. These repeating columns would be called “Keys.” He also specified that the logical design of a database should be separate and independent of physical design considerations such as file ty pes and disk writing and reading functions. :e specified that there should be a “data sublanguage” that can perform all data related tasks. SQL has evolved into this language. We will discuss it more thoroughly in a later chapter. For a discussion of Codd’ s 12 rules see Wikipedia http://en.wikipedia.org/wiki/Codd's_12_rules Figure 3: SQL Server Relational Database Manager showing an Entity diagram for a DVD Rental datab ase This may sound complex, and it certainly can be, but it solved many of the problems that plagued the databases of the day. One of those problems was data redundancy. Redundancy refers to the need to store the same data in more than one place in the database. In a banking database, for instance, you would store the customer’s name and address along with an associated savings a ccount. But you might Hands ON Database 23 have to repeat this same customer information for a checking account. The more times you have to enter the same information, the more likely it is that one of the entries will contain an error. Also, if you have to change the informat ion, an address or phone number, for example, the greater the likelihood that one of the entries could miss be ing updated. This kind of update error is why bills or notices sometimes continue to an old address even after you have submitted your new address to a company. It was changed it in some places but not others. =n a relational database the redundancy is minimized. A bank would enter the customer’s data only once, in one place. Any changes would be made only in one place. The only redundancy that is a llowed is the repetition of a key column (or columns) that is used to create relationships among the tables. This significantly reduces the chances of error and protects the integrity of the data in the database. Figure 4: Primary key Foreign Key Relations between a Customer table and a Transaction table CustomerID (PK) LastName FirstName Address City State C41098X3 Carson Lewis 121 Center Street Seattle WA CV1099B1 Madison Sarah 1324 Broadway Seattle WA D345XU24 Brown Lisa 2201 Second Ave Seattle WA TransactionID TransactionType TransactionDate CustomerID (FK) Amount 10002345 Deposit 2009 -2-12 10:25:06 C41098X3 1245.76 10002346 Deposit 2009 -2-12 10:27:13 CV1099B1 500.00 10002347 Withdrawel 2009 -2-13 -14:45:57 C41098X3 200.00 Another problem the relational design helped solve was the problem of relating data from different parts of the database. In many of the previous database designs, a programmer had to write a routine in a language like Fortran or Cobol to extract the data from various parts of the database and compare them. In a well designed relational database every piece of data can be compared or joined with any other piece of data. The relational design was a huge step forward in flexibility. Hands ON Database 24 The chief drawbac k of relational database is the inherent complexity of the design. It is fairly easy to design a bad database that will not do what a client needs it to do. The chief advantages, for a well designed relational database are data integrity and flexibility. T hese two advantages have made it the most commonly used database model for the past 30 years or so. The Opportunity They walk from Terry’s office down the hall to the computer lab. Terry stops at the front desk. “The computer lab is one of our designated tutoring areas, and I suspect the one where most of your sessions would be scheduled.” She picks up a clipboard conta ining several pieces of paper . “We have 2 page s for each week an AM one and a PM one . At the beginning of the month, each tutor enters their availability for each day, what times they are available that day, and what courses they can tutor for . “Students sign up for particular sessions. Tutoring is free for the students as long as they are enrolled in the class for which they are getting tutored.” “:ow do you check that?” “Right now it is mostly a matter of trust.” “:ow long is each tutoring session?” “Tutoring sessions are for 30 minutes each, and a tutor can only do 30 sessions or 15 hours a week.” “What if you set up a time slot and nobody signs up?” “As long as you show up when scheduled, we will pay you for the time. The pay, by the way, is $10.50 an hour.” Hands ON Database 25 “Thanks.” Sharon looks over the notebook. “Hust out of curiosity, what do you do with the schedules at the end of the month?” “Actually, = take them back to my offic e ever two weeks and type it into various spreadsheets to make reports to the people who pay for the tutoring, and to determine the pay for the tutors themselves.” Sharon turns to Terry and says, “You know, you could really use a database. =t would make it much simpler to track schedules and availability and it could make doing your reports much easier.” Terry sighs. “=’ve known that for some time, but we just can’t find anyone willing to take on the task. The school’s database administrator is much too bus y and no one else feels competent or has the time to take on the task.” Sharon hesitates a little, then says, “= might be able to put a database together.” Terry looks hopeful. “Really? That would be wonderful. We even have some money in our budget so we c ould pay you something for your work.” “= am still learning database,” Sharon cautions, “but = am pretty sure I could make you something that would meet most of your needs.” “Good, why don’t you come by tomorrow about this time and we will talk about it.” “= will be there.” Things to think about There are many situations that could be improved with the addition of a database. Whenever ther e is a large amount of complex data to handle, a database is likely to provide the best solution . There are times, however, when the data involved is more modest in scope and complexity, that a relational database may be overkill Relational database s are complex to develop and maintain. The benefits when dealing with large amounts of data are worth the costs in development time and maintenance. But sometimes, the best solution is simply a spreadsheet such as Excel. Hands ON Database 26 Things you should know RD BMS A Relational Database Management System (RD BMS) is, as its name suggests, a system for managing relational databases. As a minimum an RD BMS needs to allow a user to create one or more databases and the objects associated with that database such as tables, relationships, views and queries. It also needs to support basic maintenance such as backing up the database and restoring it from a back up file. It also needs to support security making sure that user s and groups have access only to the databases and data that they are authorized to use. Most com mercial RD BMSs offer many features beyond these basic ones. Most include tools for monitoring and optimizing the performance of their databases. Many include r eporting services to format and present the results of queries. Some even include complex Business Intelligence Packages for analyzing business trends and patterns. Below is a table of the most common RDMSs with a link to their home web sites. Table 1 RD BMS Comments URL ORACLE The first commercial RDMS and the biggest.
 Powers many of the world’s largest companies http://www.Oracle.com SQL Server Microsoft’s RDMS product. Ships in many versions designed for different company needs.
 Also powers many large enterprises http://www.microsoft.com/sql/default.mspx DB2 IBMs RD BMS http:/ /www306.ibm.com/software/data/db2/9/ MySQL The most popular Open Source RD BMS currently http://www.MySql.com Hands ON Database 27 owned by SUN ACCESS Microsoft’s Desktop Database http://office.microsoft.com/en ; us/access/default.aspx?ofcresset=1 Getting the Scope After Sharon leaves Terry, she goes to one of the instructors, A professor named Bill Collins from whom she hopes to get a recommendation. He is setting in his office and smiles when he opens the door for her. “Come on in. :ow can = help you today? ” She t ells about her plan to tutor and asks for a recommendation. He says he will be happy to provide one. Then Sharon tells him about the possibility of making a database. She says, “=’ve got a thousand ideas about how the database should look and what should b e in it.” Things to watch out for It is easy to get carried away with your own excitement about a database project. You may be able to see several possible solutions and want to start designing right away. But it is critically important that you delay des igning until you have a clear idea of what client wants and needs. Patience and the ability to listen are among the most important skills of a database developer. Bill cautions her, “Be careful not to get ahead of yourself . You need to remember you are not m aking this database for you . You are making it for a client. You need to listen carefully to what Terry and the other people who will use the database say about what they need and not get trapped by preconceived notions. The first thing you need to do is get as clear an idea about what the database is intended to do as possible.” Hands ON Database 28 “A statement of scope?” “Yes, that would be a good place to start, but I would go farther and make a complete statement of work.
 That would include the scope, but it would also contain some discussion of the background, the objectives of the project and a tentative timeline. I have some samples I can share with you. Listen, if you need any help or advice on this project, feel free to ask me.” “Thank you. Thank you very much.” Th ings You Should Know Statement of Work A statement of work is a preliminary document that describes, in general, the work that needs to be done on a project. Often this is prepared by the people who want the work to be done and offered to contractors to for bids. But sometimes, as in this case, it can be used as an initial clarifi cation of task at hand. It is important to have something like a statement of work for any major project so that everyone knows what is expected. Without it, people often find, sometimes late in the process, that different individuals have very different expectations about what the project should contain. A statement of work is also a good reference throughout the project to keep everyone on track and focused. The statement is preliminary and can be altered as the needs of the project change or grow. But, by referring to the A statement of scope is a short statement of one or more paragraphs that says in clear, but general, terms what the project will do. A Statement of work is a more complete statement about the objectives and timeline of the project Hands ON Database 29 statement of work, you can guarantee that any changes or additions are a matter of discussion and not just assumed by one of the parties. The following table delineates a few of the elements that can appear in a statement of work. Table 2: Statement of Work Elements The First Interview The next day Sharon sit s in Terry’s office. She has brought a notebook to take notes. She has written down some of the key questions she knows she will need to ask. Sharon knows it is important to be prepared and focused for any interview. She has also brought a diagram of a dat abase she creat ed for a non -profit to show Terry as an example of database work she has done. Terry says, “Thanks for coming in. You have no idea how long and how much we’ve wanted a database for the tutoring program. We have to generate several reports ea ch term to justify our funding. It has gotten so that it takes most of my time. It keeps us from doing things to improve the program. We also really need to be able to track what works and what doesn’t better.” Element Description History Describes the reason for the project, usually a problem with the current system or an opportunity to provide new services. May describe the various steps and efforts that led to the current state of the project. Scope Provides a general statement of the requirements and expectations of the project.
 It states only the high level requirements and does not get into specifics. It does not go into detail about how things are to be done. It may include some general constraints such as time or budget limits. Objectives The things the project is intended to achieve. Objectives aren’t about creating specific elements of the database, for instance, but about what the database is sup posed to achieve, why the client wants the database in the first place. Tasks and Deliverables Breaks the project into discrete tasks. Each task should have an estimated duration and concrete deliverables. Hands ON Database 30 Sharon nods, “= really hope = can help. I brought an example of a database I made for Capital Charities to show that I do have some experience creating databases. We did this as part of a project for a Database class” Hands ON Database 31 Figure 5: Sample Entity Diagram for a Non -Profit Terry looks at the diagram as Sharon explains it. Hands ON Database 32 “Capital Charities provides funds for basic utilities, food and occasional repairs for poor families on a one time, emergency basis. They needed to be able to track their contributors and their contributions. That was one part of the database. That data is stored in the contributor and contribution tables. That line between them indicates a one -to-many relationship. =t uses what is called “crows feet” notation. It shows that each contributor has contributed at least once and may have contributed many times . The crows foot, those three lines, points to the many side of the relationship. The other part of the database tracks the types and amounts of assistance given to each client. The client information is entered into the Client table.” She points to the Cl ientNotes entity, “There can 0 or many notes about any client. Each client receives assistance at least once. That was a business rule of the charity. They only wanted to list as clients those they had actually given assistance to. Each act of assistance i s associated with a particular councilor and can involve several different types of assistance. That is the reason for the AssistanceDetail table.” “=t looks complex.” “=t is a little. But = also built some forms and reports that made it so the Capital Cha rities staff didn’t have to navigate the database directly. =t made it a lot easier to use.” “Well it certainly looks like you should be capable of doing this for us. What do you need from me?” You have already started suggesting some of the things I want to talk about today —things you want the database to do. What I need to get from you today is a clear sense of what you want the database to do for you. = don’t need specifics yet, just general statements of what you want to see and what the database needs to do to be useful to you.” Crows Feet Notation : A type of Entity Relation Diagram where the relationships are depicted using lines and 0’s. These are more descriptive of relationships than the diagrams using simple arrows. Hands ON Database 33 Terry hesitates, “Ok…Where do = start.” “You already suggested a couple of things. You need to track what works and what doesn’t. :ow would you determine that something is working or not working?” Things you should know You sh ould always go to an interview prepared. In this initial interview, you should be prepared to help them get started on the right track and have questions that help focus them on the important aspects of the database. But you don’t want to guide them toward some preconceived notion of what the database should be. Rather, your questions should help them guide you to a clearer understanding of what they need out of a database “Well, part of it is how many students are using the tutoring services. What course s are they ta king tutoring for and how the tutoring they receive help s the m succeed in the ir course s. Do they get better grades? Does tutoring st op them from dropping the class? I know these are a bit vague and difficult to track.” “That’s OK. What about scheduling tutors and students. What do you need to track to do that?” “Well, we need to track tutors, of course, and what classes they can tutor for. We need to track the tutor’s schedules so we know what times they are available. We need to know which st udents sign up for each session and ideally we should be able to check that they are actually taking the course for which they are getting tutoring.” “Do you need to track demographic information for students?” Hands ON Database 34 “=f we could, that would be great. =t would make our reporting much easier. Several of our grants are targeted at particular groups of students. We would have to guarantee that such information would remain private. ” “What other reports do you need to make.” “= need to know how many hours each tutor worked in a pay period. I need to know how many students each tutor saw. I also need to know how many unduplicated students were seen each term .” “Unduplicated?” “Yes, individual students. A single student could get several sessions of tutoring. For some reports we need to know how many individual students we are serving —not just how many sessions we have scheduled.” “Can you think of anything else?” “We really need to know if a student actually got the tutoring they signed up for. Sometimes a student will sign up and then not show for the actual session. It might also be good to know what courses students want tutoring in where we are not offering it. Maybe you could provide a way for students to request tutoring for courses or subjects.” “Anything else?” “Nothing = can think of right now.” “OK. What = am going to do is to take this and write up a statement of work describing the database, the objectives and a tentative time line. Then we can look at it and see if it really describes the database you need. =f it doesn’t we can adjust it. When it does, we can use it to refer back to keep us on track so that we don’t get lost in the details later.” Hands ON Database 35 “Thanks,” Terry stands up. “= actually think we can do this. You really seem to know what you are doing.
 I am loo king forward to it.” Sharon smiles, though she doesn’t feel nearly as confident in her abilities. “= am looking forward to it too.” Identifying the Big topics Sharon goes to the school cafeteria and gets a cup of coffee. She sits down to go over her notes. She knows it is important to review them while the interview is still fresh in her mind. The first thing she needs to do is to identify the big topics. What is the database about? What are the major components going to be? “Well, tutoring,” she says to herself, “that is the big topic.” But what does tutoring include. She takes out a pencil and starts a list, “Tutors, of course, and students and the tutoring schedule.” She writes them in the list: tutors students tutoring schedule “=s there anything else ? Anything = am missing?” She frowns as she concentrates for a moment. “Courses! Tutors tutor for specific courses and students are supposed to be registered in those courses in order to get tutoring.” She adds it to the list. Students also should be able to request tutoring for specific courses. She adds Requests to the list. tutors students tutoring schedule courses requests Hands ON Database 36 She thinks a bit longer. “We need to track whether students attended the sessions they scheduled . That is important, but is it a n ew topic? =t could be part of scheduling.” Terry wanted one more thing, she remembers. She wanted to track student success. To Sharon that seems like a different topic entirely.
 She recalls that Bill Collins in his class always insisted that a good databa se like a good table should be focused on a single topic. She decides to leave the list as it is . Things you should know Identi fying the major topics of a database is an important exercise. It helps provide a clearer sense of just what the database is about. It also is the first step toward identifying the “entities” that will be used in the database design. One way to begin ident ifying the major themes is to look at the nouns in your notes. See if they cluster together around certain themes. These themes are most likely the major topic s of your database. We will look at this technique more closely later when we talk about defining entities and attributes. It is important to note that a database may contain several themes, but all those themes should relate to a single overarching topic like tutoring. If there is more than one overarching topic, it may indicate that that you should develop additional databases. Writing the S tatement of Work Entities — an entity is something that the database is concerned with, about which data can be stored, and which can have relationships with other entities. Attributes — are things that define entities (The entity customer has attributes like name and address) Hands ON Database 37 Now that she has the big topics in mind, she begi ns to compose the Statement of Work . She begins with the History. The history is a statement of the problem. It can narrate how the current situa tion came to be the way it is. Sharon thinks about the things she saw and the things that Terry told her. For a long time the tutoring program has used a paper schedule to sign students up for tutoring.
 Tutors identify their schedule for a two week period and then a schedule is printed and placed in the computer lab. Students look through the schedule for sessions that match courses they are taking and the times they have available. This system has worked and continues to work, but it has several significan t problems. For one, it can be difficult for students to find appropriate tutoring sessions. The paper forms are difficult to navigate and understand. Additionally, it is very difficult for the tutoring program to track the students using the tutoring. It is difficult or impossible to track demographic information. It is also difficult to assure that students are enrolled in the courses they receive tutoring in. Even tracking tutors’ hours can be difficult. A database with a client application could signifi cantly improve the situation, by providing a flexible, searchable schedule for students, better tracking of demographics and eligibility, and better tracking of hours tutored. She pauses. That was hard to get going, but once she got started it flowed prett y well. The tutoring database will be designed to manage the tutoring program at the college. She isn’t real happy w ith that as an opening sentence. She modifies it a little and forge s ahead . It proves to be a lot harder than she imagined. The statement has to include all the general points but still be concise enough to give a clear indication of the purpose and functions of the database. After a lot of effort she had this preliminary state ment: Hands ON Database 38 The tutoring database will manage data for the tutoring program at the college. It will track available tutors and the courses they can tutor. =t will also track each tutor’s tutoring schedule. The database will store demographic information for stu dents who register for tutoring. This information will be private and used only generate general reports which include no personal information. Students , who have registered , will be able to sign up for available tutoring sessions for courses in which they are enrolled. The database will track whether students attended their scheduled sessions. Sharon looks it over carefully. What about the data about student success? Should that be a part of this database, or should that be a separate project? She decides to set it aside until she has talked with Terry. She also wonders if she should state some of things the database won’t do. Things like: The database can be used to get the hours worked for each tutor, but it will not process pay or payroll information. The database will not validate student information against the school’s registration database. For the momen t, she can’t think of any other constraints . She consults an example her instructor gave her to look at. The next step is to set out the objectives for the database. She spends some time thinking about this. Most of th e objectives are spelled out in the scope. She pulls out some of the main points and makes a list. Constraints ore limits on what the database will do. Later we will see that you can also set constraints on the types and range of data that can be entered i nto a column in a table Hands ON Database 39 Streamline the process by which the tutors enter their schedules and students sign up for them Improve tracking of demographic data of students using the tut oring program =mprove tracking of tutor’s hours and students use of tutoring sessions Next she needs to add tasks and a timeline . She jots down some notes on a paper. The first thing she will have to do is to gather information. She needs to know all the relevant data and processes. How long will that take? She makes a rough guess of two to three weeks. Then she will have to evaluate all the information she has gathered and use it to start developing a list of business rules and first rough model of the da ta. That could take another couple weeks. Next she will have to refine and normalize the model. Sharon thinks she can do this in two or three days. Then she needs to actually make the database. That won’t take long. She can probably do that part in a coupl e of hours. What then? Sharon muses for awhile. The last part may take a fair amount of time. She will need to test the database and make sure that it meets all Terry’s needs. She will also have to test for security issues and privacy. That could take two or more weeks of intense work. Where does that put her? Sharon calculates and taking the longer times in each case comes up with nine or ten weeks. None of this is counting the fact that it will take a completely different development project to create a c lient application for Terry, the tutors and students to interact with the database. But, Sharon says to herself, one project at a time. Hands ON Database 40 Sharon almost has everything she needs for the statement of work, but there is still something missing. After a while it occurs to her: every task should also have a deliverable, something concrete she can show Terry to let her know that the database is on track. Sharon spends the next couple of hours completing her statement of work. Reviewing the Statement of Work The following afternoon she returns to Terry’s office and shows her the statement. As Terry looks it over Sharon says, “=t is important that we both are clear about what we are working on. = don’t want to go off and make a database and then find out it is not what you had in mind at all.” “No, = can see that is a really good idea.” She sets the paper down.
 “What about the surveys of student success?” “= thought about that, and = am not sure. Sometimes = think that does belong in this project, and other times I think that it is a separate project on its own. I am not sure how we could get objective data on their success but we could include evaluations by students or a quarterly survey. If we build the database as I have described it we should be a ble to add the success tracking features later or we could look at adding a second database devoted to tracking student success .” “Ok, = can live with that. =t would be nice if you could validate student information.” Things to Think About: Estimating Times One of the most difficult things for anyone who is new to developing database s is estimating the time it will take to complete the various tasks. Experience will help, but before you have enough experience how to do you even begin to guess an appropriate time? There are some techniques that can help. One is to make a weighted aver age. To do this write down your most optimistic time — if everything goes perfect --your best guess at the probable time it will take, and your most pessimistic time estimate — if everything that can goes wrong. Add them all together, but multiply your most pro bable estimate by 3, then divide the sum by five. (0 + Pt x 3 + p)/5 What other ways can you think of to help your time estimates be more accurate? Hands ON Database 41 “Yes, but = don’t really know how to do that. I also think it unlikely that I would be granted the permissions = would need on the School’s registration database. You might be able to get the school’s developers to look at that piece later.” “Fair enough. One other thing you don’t have here, and I am not sure we talked about it, but it would be nice if students could request tutoring in courses that we don’t currently have tutors for. =t would help us know where the need is and where we need to try to recruit new tutors.” “That shouldn’t be a problem. = can add that.” “Good. What do you need to proceed?” “Well, let’s go over the tasks and timeline. First, I am going to need to gather some information. I am going to need to see how you have been doing things. I will need to talk to some tutors, and maybe some students, and I probably need to see the reports you make to make sure that the database contains all the information you require. Then I will need to analyze all the information I get and begin to make a data model. After all that I can act ually make the database and test it.” Terry studies the timeline. “This is very clear and well done. :ow realistic do you think this timeline is.” Sharon smiled. “=t represents my very best guess. It could go faster if everything works out well, but it cou ld also go slower if I encounter problems. I tried to be very conservative on the times, so I think there is a good chance it can be completed on schedule.” “Good, it would be ideal if the database could be in place by the beginning of next term.” Sharon w arns, “There is another piece to all this. There will need to be client application developed so you, the students and tutors can interact safely and easily with the database. But that is really a separate project.” Hands ON Database 42 Terry smiles. “You’re right. We can tack le that when we have finished with the database.” “Tell you what, I will come by tomorrow with a revised version of this statement, and I will give you a preliminary plan of where we go next.” Terry stood up and put out her hand to shake. “Sounds good. = look forward to working with you on this.” The Statement of Work Home, later. Sharon revised the statement of work to include student requests . Here is her completed statement of work : STATEMENT OF WORK: TUTORING DATABASE PROJECT HISTORY For a long time the tutoring program has used a paper schedule to sign students up for tutoring. Tutors identify their schedule for a two week period and then a schedule is printed and placed in the computer lab. Students look through the schedule for sessions that match courses they are taking and the times they have available. This system has worked and continues to work, but it has several significant problems. For one, it can be difficult for students to find appropriate tutoring sessions. The paper forms are difficult to navigate and understand. Additionally, it is very difficult for the tutoring program to track the students using the tutoring. It is difficult or impossible to track demographic information. It is also difficult to assure that students are enrolled in the courses they receive tutoring in. Even tracking tutors’ hours can be difficult. A database with a client application could significantly improve the situation, by providing a flexible, searchable schedule for students, better tracking of demographics a nd eligibility, and better tracking of hours tutored. SCOPE The tutoring database will manage data for the tutoring program at the college. It will track available tutors and the courses they can tutor. =t will also track each tutor’s tutoring schedule. T he database will store demographic information for students who register for tutoring. This information will be private and used only generate general reports which include no personal information. Students, who have registered, will be able to sign up for available tutoring sessions for courses in which they are enrolled. The database will track whether students attended their scheduled sessions. It will also track student requests for tutoring in additional course and subjects. Hands ON Database 43 Constraints The database ca n be used to get the hours worked for each tutor, but it will not process pay or payroll information. The database will not validate student information against the school’s registration database. OBJECTIVES Streamline the process by which the tutors enter their schedules and students sign up for them Improve tracking of demographic data of students using the tutoring program =mprove tracking of tutor’s hours and students use of tutoring sessions Track Student requests for additional tutoring TASKS AND TIME LINE 1. Gathering Data: This task will consist in a number of interviews, questionnaires and observations. Time allotted 3 weeks. Deliverable: A list of scheduled interviews and observations, text of the questionnaires. 2. Analyzing Data: The data gathered will be analyzed to determine business rules and preliminary data modeling. Time allotted 2 weeks. Deliverable: List of business rules to be reviewed, basic entities and attributes. 3. Normalization: the data model will be completed with entities and relationships normalized. Time allotted 1 week. Deliverables : Entity Relation Diagram for Review. 4. Building the physical database: The data model will be translated to the Relational Database Management sy stem. Tables, Columns with specific data types and Relational and other constraints created. Time allotted 3 days. Deliverables: The Schema of the database for review. 5. Testing and security; Sample data will be entered and each of the business rules and req uirements will be tested. General database security and security related to business rules will also be tested. Time allotted 3 weeks. Deliverables : Documented test results. 6. Database Completion and installation: final changes and corrections are made. Samp le data will be removed and the database installed on a server. Final testing for server access and connections. Time allotted 2 weeks. Deliverables: The working database. Total time between beginning of project and end: 11 weeks, 3 days. Hands ON Database 44 Things we have d one In this chapter we identified a situation in which a database could prove valuable reviewed briefly the history of databases identified some of the components of relational databases such as entities and key fields observed an interview to gather gener al information about a database broke the general information into major topics used the major topics to develop a statement of work for the database Vocabulary Match the definitions to the vocabulary words 1. Attribute 2. Foreign Key 3. Statement of work 4. Primary Key 5. Data integrity 6. Redundancy 7. Delimited files 8. Relational Database 9. Entity 10. Relational Design 11. SQL 12. Constraints a. A type of database that uses “relations,” tables, to store and relate tables. Hands ON Database 45 b. The process of organizing data into tables or entities and then determining the relations among them c. The language Relational Databases Use to create their objects and to modify and retrieve data. d. These files have some sort of character separating columns of data. The delimiter is often a comma or tab, but can be any no n alphanumeric character . e. Files where the length in characters of each column is the same . f. Refers to the accuracy and the correct ness of the data in the database . g. Refers to storing the same data in more than one place in the database . h. This key uniquely ide ntifies each row in the table. i. This key is the primary key repeated in another table to create a link between the tables . j. A short statement of one or more paragraphs that says in clear, but general, terms what the project will do. k. Something that the datab ase is concerned with, about which data can be stored, l. Things that define aspects of entities m. Limits on what the database will do . n. A document including the scope, objectives and timeline for a given project Things to look up 1. Look up Codd’s twelve rules. Choose one of the rules to explain to your fellow students. 2. Look up the history of SQL. How many revisions of the standard have there been? What was added in the most recent one? 3. Use the internet to look up Database related jobs. Make a brief report summar izing what you find. Hands ON Database 46 4. A recent trend for major commercial Database developers is to offer free “Express” versions of their databases. Microsoft has Sql Express , Oracle has Oracle Express and DB2 has DB2 Express . Go to the company web sites and look up these Express editions. What features does each one have? What limits do they have? How do they compare to each other? 5. For some time there have been attempts to move beyond Relational databases, to find some new data model. One direction has been to move towar d Object Oriented Databases . Another area of research is into XML based databases. Choose one of these to look up and write a brief summary of what the model entails and what is the current status of the model. 6. Look up Statements of Work. What are some add itional elements that can be included? Practices 1. Think about keeping a home budget. Would it be better to keep the budget in spreadsheets or to create a budget database? Write a couple of paragraphs that describe your choice and at least three reasons to j ustify it. 2. An Entity is something the database is concerned with. For instance, a movie rental business would probably have an entity called DVD. Attributes are things that describe the entity. Make a list of possible attributes for a DVD entity. 3. You are g oing to interview a small business owner about creating a database for his sandwich shop and bakery. Make a list of questions for this initial interview. Remember at this point you just want the big picture and major requirements. Don’t get too deep into t he details. 4. Look around the school or think of some businesses or non profits with whom you are familiar.
 Identify at least one situation in which a database could be a help. a. Describe why a datab ase would improve the situation. b. Describe what the major top ics of this database would be Hands ON Database 47 c. Write a statement of work for this database 5. An instructor has been keeping all his grade books in Excel for years. He has a separate spreadsheet for every course. In the spreadsheet he tracks the scores for every assignment an d test and then assigns term grades based on the overall averages. Whenever a former student contacts him requesting a letter of recommendation or whenever the administration requests information concerning a student in a previous term he has to open and s earch several spreadsheets to get the student’s information. a. What are s ome of the advantages a database would have over the current system for this instructor? b. What would be some of the major topics for the database? c. Write a statement of work for the database above. Scenarios These scenarios are designed to give you the opportunity to experience database development from beginning to end. Each has its own unique challenges. They can be pursued individually or in small groups. I would suggest choosing one scenario that interests you to follow throughout the term . Later, if you are so inclined you can return and work through some of the others. Wild Wood Apartments owns 20 different apartment complexes in Washington, Oregon, California, and Idaho. Each apartment complex contains anywhere from 10 to 60 separate apartments, of varying sizes.
 All apartments are leased with a six month or yearlong lease. Hands ON Database 48 It is the company’s practice to hire one of the tenants to manage each apartment complex. As managers they need to admit new tenants to the building, collect rents from existing tenants, and close out leases.
 The manager also needs to maintain the apartments conducting any re pairs, replacements, or renovations. These can be billed back to the parent company. For acting as manager, the tenant gets free rent and a stipend. The stipend varies depending on the size of the apartment building. Each manager is expected to send a repo rt to the Wild Wood Apartments company headquarters in San Francisco every quarter. This report summarizes the occupancy rate, the total revenues in rent, the total expenses in maintenance and repairs, etc. Currently managers fill out a paper form and mail it back to headquarters. Many apartment managers have complained that preparing this report is a very difficult and time consuming process. Also, the managers at corporate headquarters have expressed concerns about the accuracy and verifiability of the re ports. To allay these concerns and to improve the ease and efficiency with which the apartment managers conduct their daily business, the company is proposing to development a centralized database that can be used by the managers to track the daily busines s of their apartment building and to prepare their reports. To do 1. List the major topics for this database 2. Write a draft statement of Work . Include a brief history, a statement of scope, objectives and a preliminary timeline. Hands ON Database 49 Vince Roberts runs a vintage record shop in the University district. :is shop sells 45’s, LPs and even old 76 RPM records. Most of his stock is used —he buys used vinyl from customers or finds them at yard sales and discount stores --but he does sell new albums that are released on viny l. For a couple of years he has kept most of his inventory either in his head or in a spiral notebook he keeps behind the sale counter. But his inventory and his business ha ve grown to where that is far from sufficient. Vince is looking for someone to mak e him a database. He knows he needs to get a better handle on several aspects of his busi ness : he needs to know the extent and condition of his inventory. He needs to know the relative value of his inventory —some records are worth a fortune; some are nearl y worthless. He also needs to track where, from whom and for how much he purchased his stock. He needs to track his sales. He often is not entirely sure how much money he has spent or how much money he has earned. In addition he would like to allow custom ers to make specific requests and notify them if a requested item comes in. More generally he would like to make an email list of interested customers in order to let them know about new items of interest. Someday, he would like to expand his business on -line. But he knows he needs to have everything under control before then. To do 1. List the major topics for this database 2. Write a draft statement of work . . Include a brief history, a statement of scope, objectives and a preliminary timeline. Hands ON Database 50 The law requires that any business, including a school track its software. It is important to know what software the school owns, in what versions, and what the license agreement for that software is. There are several different licensing schemes. The leas t restrictive is a "site" license which allows an institution to have a copy of the software on any machine on the business property. Other licenses specify a certain number of active copies for an institution but don't worry about which machine or user ha s the copy. The more restrictive licenses do specify one copy per a specific machine or user. Whatever the license agreement for particular software, it is essential for the institution to know which software is installed on which machine, where that mach ine is located, and what users have access to that machine. It is also important to track when the software is uninstalled from a machine, and when a machine is retired. An additional useful feature of any software tracking database would be to track softw are requests from users to determine 1) if a copy of the software is available, and 2) if it something that should be purchased. All installations are reviewed and must be approved. For now the school just wants the database to track faculty and staff comp uters and software. Software for student machines is a separate and complex issue and will be treated as a separate project at a later time. To do 1. List the major topics for this database Hands ON Database 51 2. Write a draft state ment of work . Include a brief history, a statemen t of scope, objectives and a preliminary timeline. A hospital is conducting a double blind test of a new depression drug. It will involve about 20 doctors and about 400 patients. Half of the patients will get the new drug and half will get traditional Prozac. Neither the doctors nor the patients will know who is getting which drug. Only two test supervisors will know who is getting what. The test will last about 18 months . Each doctor will see 20 patients initially, though it is expected som e patients will drop out over time. Each patient will coming in twice a month for a checkup and interviews with their doctor. The drugs will be dispersed in a generic bottle by the two supervisors one of whom is a pharmacist. To track this study the hospit al will need a database. It will need to track patient information from their first screening through each of their interviews. In particular they are looking at whether the patient seems more depressed or less, what their appetite is like, are they sleepi ng, what kind of activities they are engaged in if any. Also it will be looking for specific physical side effects such as rashes, high blood pressure, irregular heart rhythms or liver or kidney problems. Hands ON Database 52 Doctors need to b e able to see their own patient’s info rmation, but not other doctor’ s patients. They also need to be able to enter blood pressures, blood test results etc, the depression indicators and their own notes for each session Patients should be able to see their own medical profile, the doctor’s notes , and nothing else. Only the two researchers should be able to see everything. All patient information, all doctors notes and which drug each patient is being given. There is always some danger of spying by other companies interested in similar drugs, so in addition to the security of th e blind test, the database needs to be secured against outside intrusion as well. To do 1. List the major topics for this database 2. Write a draft statement of work . . Include a brief history, a statement of scope, objectives and a preliminary timeline. Hands ON Database 53 Chapter T wo : Gathering Information (Interviews, Observations and Reviewing Documents) Now that she has the scope of the database, Sharon begins to gather information about the data the database will need to capture and process. First she looks at the sheets that have been used to schedule tutoring sessions. She looks also looks at the spreadsheets the supervisor develops for reports and other related documents. Then she arranges an interview with several of the tutors and a couple of student s. As a fol low up she creates a questionnaire for students who use the tutoring services. Finally she spends an afternoon in the computer lab, observing how students schedule tutoring and how the actual tutoring sessions go. Outcomes: Review documents to discover re levant entities and attributes for database Prepare interview questions and follow up Prepare questionnaires Observe work flow for process and exceptions Looking at the Documents Sharon has arranged to meet with Terry early in the morning. She arrives on time and Terry greets her. “Let’s go look at how students sign up for tutoring now.” Hands ON Database 54 Sharon follows Terry to the lab. On the counter of service station at the front of the lab there is a clipboard with sign in sheets for tutoring. Each sheet is for one week. Across the top are the days of the week. Down the left margin are times. Tutors mark the times they a re available and what topics they are tutoring by listing their name and the class they are tutoring for in a time slot. Students sign up for a time slot. Figure 6: Morning Tutoring Appointments Tutoring for the Week of 4/12 to 4 -16 2009 Monday Tuesday Wednesday Thursday Friday 9:00 AM TT: CL: ST: ---------------- TT: CL: ST: ---------------- TT: CL: ST: TT: CL: ST: ---------------- TT: CL: ST: ---------------- TT: CL: ST: TT: CL: ST: ---------------- TT: CL: ST: ---------------- TT: CL: ST: TT: Aimes CL: (Math 290) ST: Laura Jones ---------------- TT: Carson CL: (ITC 110) ST: --------------- Johnson (ITC 224) Shanna Taylor TT: CL: ST: ---------------- TT: CL: ST: ---------------- TT: CL: ST: 9:30 Am TT: Johnson CL: (ITC224) ST: ---------------- TT: CL: ST: ---------------- TT: CL: ST: TT: CL: ST: ---------------- TT: CL: ST: ---------------- TT: CL: ST: TT: Carson CL: (ITC 110) ST: Peter Laws _________ TT: Joh nson CL: (ITC 224) ST: Sara Lewis ---------------- TT: CL: ST: TT: CL: ST: ---------------- TT: CL: ST: ---------------- TT: CL: ST: TT: Johnson CL: (ITC 224) ST: Bob Green ---------------- TT: CL: ST: ---------------- TT: CL: ST: 10:00 AM TT: CL: ST: ---------------- TT: CL: ST: ---------------- TT: TT: CL: ST: ---------------- TT: CL: ST: ---------------- TT: TT: CL: ST: ---------------- TT: CL: ST: ---------------- TT: TT: CL: ST: ---------------- TT: CL: ST: ---------------- TT: TT: Stevens C:(Math 100) ST: homas Seth ---------------- TT: CL: ST: ---------------- TT: Hands ON Database 55 CL: ST: CL: ST: CL: ST: CL: ST: CL: ST: 10:30 AM TT: CL: ST: ---------------- TT: CL: ST: ---------------- TT: CL: ST: TT: Mary L CL: (ENG 101) ST: Ly Poon ___________ TT: Sanderson CL: (ITC 110) ST: Anderson ---------------- TT: CL: ST: TT: CL: ST: ---------------- TT: CL: ST: ---------------- TT: CL: ST: TT: Mary L CL: (ENG 101) ST: ---------------- TT: CL: ST: ---------------- TT: CL: ST: TT:Stevens CL:(Math 100) ST: Thomas ---------------- TT: CL: ST: ---------------- TT: CL: ST: 11:00 AM TT: CL: ST: ---------------- TT: CL: ST: ---------------- TT: CL: ST: TT: Mary L CL: (ENG 101) ST: Snodgrass ---------------- TT: CL: ST: ---------------- TT: CL: ST: TT: CL: ST: ---------------- TT: CL: ST: ---------------- TT: CL: ST: TT:Mary L CL:(ENG 101) ST: Martin Yang ---------------- TT: CL: ST: ---------------- TT: CL: ST: TT: Stevens CL: (Math 100) ST: Brown ---------------- TT: CL: ST: ---------------- TT: CL: ST: 11:30 AM TT: CL: ST: ---------------- TT: CL: ST: ---------------- TT: CL: ST: TT: Mary L CL: (ENG 101) ST: ---------------- TT: CL: ST: ---------------- TT: CL: ST: TT: CL: ST: ---------------- TT: CL: ST: ---------------- TT: CL: ST: TT: Mary L CL: (ENG 101) ST: ---------------- TT: CL: ST: ---------------- TT: CL: ST: TT: CL: ST: ---------------- TT: CL: ST: ---------------- TT: CL: ST: Sharon looks at the sheets. “= presume TT: stands for tutor and CL: for class and ST: for student. Is that co rrect? Hands ON Database 56 Tracy nods, “ Yes that is correct.” “Is this all the information you have about the tutoring sessions? How do you know if the student showed up or not?” Things You Should Know Gathering Information Before you can actually begin designing a database, you must understand what data the database needs to store and how that data will be used. It is tempting to think you understand the gist of what is going on and start sketching out tables and columns, but it is always better to wait. Gather information. Make sure that you understand exactly what the customer needs to store in th e database and why. Gathering information is complex task. Most projects have many facets that need to be accounted for. It can be quite daunting, but there are some b asic steps to help you proceed. initial interviews with the chief stakeholders (the man agers or executives that are initiating the database project Review of business documents to identify data elements interviews with stakeholders Questionnaires Work shadowing (observing the flow of information) The initial interview should provide the overview of the database. In it you define the domain of th e database, that is what business tasks and information the database is meant to Work Shadowing : following and observing person as they go through their work routine Domain : the focus of the database. If the database is about the tutoring program, its domain is “tutoring” Hands ON Database 57 handle. You may get a few specific requirements in this initial interview, but the primary goal should be to get a clear picture of why the database is needed and what, in gen eral, it is meant to do. One of the first tasks should be to review any business documents. Business documents consist of forms and reports related to the data, but can also include things like memos, organizational charts, mission statements, company goals, plans etc. Reviewing documents allows you to begin to make a list of what kind of content your database will have. It is impor tant to ask about any abbreviation or item you don’t understand. Next you sh ould identify the chief stakeholders. A stakeholder is anyone who wil l interact with the database directly or indirectly. A stakeholder is anyone who has a “stake” in the results. Stakeholders include the managers and the employees who will work with database. They probably also include IT staff who will develop, maintain a nd support the database. They may also include direct customers and business partners. Once you have identified stakeholders, you should arrange interviews with each group or possibly with all the stakeholders together. The purpose of the interviews is to get each stakeholders perspective on what data the database needs to store for their use and how they will need to process that data. Questionnaires may be more efficient to gather some types of information . You can often get responses from more people th an in an interview. Questionnaires are best for technical information and close ended questions that require simple straight forward answers. Stakeholder : Anyone with a “stake” in the final product. Anyone who will use or be affected by the database Requirement : Something the database must do. For instance, It must keep track of tutors and the classes they can tutor for. Hands ON Database 58 Finally, it is extremely valuable to watch how people work with the system they currently have. You can observe the “flow” of the data, how it is captured, how it is used. =t is also a valuable way to discover exceptions to the rule. “Oh, we always give Mr. Hohnson a discount, he has been such a good customer.” or “Sometimes we wave the fee. =t is up to the clerk.” =f your database doesn’t allow for common exceptions it may prove too rigid to be useful. “= use these sheets but = also have the tutor’s reports. Each tutor i s supposed to fill out short little report form for each session time they sign up for. In fact, the reports are my primary source of data. The signup sheets are just a check to make sure that I have all the report forms. Some tutors are a little lax about turning them in. ” “Do you have any of those forms that = could look at?” Terry smiles, “Of Course. “ She walks behind the desk. “We keep the forms here for the tutors.” Sharon takes th e form and looks at it briefly. “=t seems simple enough.” Terry nods. “=t is quite simple. We wanted the tutors to focus on tutoring not on paper work.” Figure 7: Tutor session Report Form Tutor Session Report Form Tutor Name Session Date Session Time StudentID Student Name (NA if no student signed up) Materials covered (NS if no show) Exception : A variation in how things are done or recorded, an alternate process Hands ON Database 59 Sharon asks, “ Does it give you the information you need to make your reports.” Things to Watch Out For Make sure you understand all the terms and abbreviations on the forms and reports you review. Terry smiles wryly. “That’s difficult to say. = use them, but it’s certainly not easy to make my report s from them.” Sharon says, “Maybe you can show me some of the reports you need to make and exp lain what you have to do to complete them.” “No problem, let’s go back to my office. Things You Should Know Reviewing Business Documents The forms and reports a b usiness uses to gather and disseminate information are an invaluable source for understanding several aspects of a business’ data needs. For one thing, they provide clear insights into the daily business processes. They show how information is gathered abo ut various transactions, and then how that information is passed to other people and departments. Studying business documents can reveal not only what information is needed , but when and in what sequence. Secondly, carefully scanning the forms and reports will reveal many, perhaps most, of the individual pieces of data the database will need to contain. B usiness documents can reveal how the data will be used, how it will be summarized, analyzed and presented. Form : a document, paper or electronic that is used to gather data Report : a document paper or electronic used to display summarized or formatted data Hands ON Database 60 There are several kinds of basic business documents that can be relevant. Two of the most important documents are forms and reports. Forms are documents, either on paper or on the computer that businesses use to capture data. They are used to “input,” thi ngs like new customer information , sale details or an employee’s hours . Reports are documents that present “output” from the system. They summarize and analyze the data that was collected through forms and other means, or the current status of inventory. Several o ther types of documents can also be useful when trying to get a picture of the data a database need to process. Manuals and proced ures can give you a sense of how things are processed, or, at least, how they are supposed to be processed. Memos and letters can provide some insight into issues that can arise in the system and also provide a sense of how the information moves through an organization and who is responsible for what parts of the information. Annual reports offer insights into the state of the organization and into what function the proposed database might serve within the broader business context. Even mission statements a nd goals can be useful. A database should be supportive of the mission and contribute to one or more of the stated goals. In her office Terry logs into her computer and brings up Excel. She opens a spreadsheet. “:ere is an example of a simple time sheet.” Procedures : documents that describe the approved steps for completing some business process. A “How to” document. Hands ON Database 61 Figure 8: Tutor Pay Spreadsheet Sharon looks over the spreadsheet. “You get the hours for each tutor by going over those signup sheets and the Report forms?” “Yes.” “= imagine that can be labor intensive and error prone.” “You can only imagine. I used to assign this task to a work study student. But, no matter how good they were or how much I trusted them, I never felt confident until I had rechecked all the materials. So now I just do the payroll report myself.” “= think we can make this task a lot easier with a database and a lot more accurate. What other reports do you have to make?” “Well, one important report is total student Usage. For this = report the total of all sessions attended by students in a term and then the undup licated count of students” “Unduplicated means you only count each individual student once. =s that correct?” “Yes. We need to know how many total tutoring sessions are attended, but we also need to know how many individual students are taking advantage of the tutoring.” Tutor Pay For weeks beginning 4/6/2009 and 4/16/2009 Tutor Week1 Week2 Total Hours Wage Gross Pay Aimes, Tabatha 0.5 2 2.5 10.50 $ 26.25 $ Carson, Karen 8 10 18 10.50 $ 189.00 $ Johnson, Luke 3 4.5 7.5 10.50 $ 78.75 $ Lewis, Mary 1 3.5 4.5 10.50 $ 47.25 $ Sanderson, Nathan 3 3 6 10.50 $ 63.00 $ Stevens, Robert 4 5.5 9.5 10.50 $ 99.75 $ Totals 19.5 28.5 48 504.00$ Hands ON Database 62 Figure 9: Total and Unduplicated Students “:ere are two other important reports. The first two charts cover demographics and the second for what tutoring topics are most sought after.” Figure 10: Gender Report 2345 1735 0 500 1000 1500 2000 2500 Total Unduplicated Tutorial Usage Term 1 2009 M 46% F 54% Unduplicated Student Count by Gender Hands ON Database 63 Figure 11: Ethnicity Report white 50% AfrAm 18% Asian 18% PacIs 7% NAmer 2% other 5% Unduplicated Student Count By Ethnicity Hands ON Database 64 Figure 12: Subject are Usage Sharon looks at the charts carefully for a moment and then asks a question: “:ow do you get the demographic information?” Terry sighs, “ =t’s not always easy. As long as the tutor remembers to put in the studentID number, I can locate the student on the School’s enrollment database. = can get their gender and ethnicity information there. If there is no student number for a particular student on any of the forms turned in, I can usually locate a student on the School’s enrollment database by searching for their last name and comparing that with the classes they are enrolled in and what topics they are seeking tutoring in. The hardest part is actually the unduplic ated counts. = have to manually eliminate duplicates.” ENG 20% MAT 35% ITC 8% ACC 8% HIS 8% SCI 14% BUS 7% Unduplicated Students by Subject Area Things to think about: Are there other forms you would have asked to look at, if you were Sharon? What other kinds of forms could be relevant to the tutor database? Hands ON Database 65 “That sound like way too much work.” “Believe me it is. But many of our grants depend on ethnicity reports. We must show that we ar e serving a diverse population. Here is the actual spreadsheet I use t o create the charts.” Report Statistics Fall Term 2010 Students Total Usage 2345 Workforce retraining 247 Unduplicated Usage 1735 Difference 610 Unduplicated Demogra phics Male 937 Female 798 Total 1735 Ethnicity White 868 AfAm 312 Asian 312 PacIs 121 Namer 35 Other 87 Total 1735 By Subject Area ACC 139 BUS 121 ENG 347 HIS 139 ITC 139 MAT 607 SCI 243 Total 1735 Hands ON Database 66 Sharon looked over the spreadsheet. “You have to gather all that information by hand? = have just a couple of questions about some of the abbreviations. Does “Pac=s” mean “Pacific =slanders?” “Yes.” “Also what does “Workforce Retraining” refer to?” “Several students receive are identified as workforce retraining. Usually they are students who have lost their jobs and have been given government grants to return to school. Workforce retraining will pay for tutoring for those students.” “:ow are other students covered?” “We get some money from different federal grants. Often these are tied to the diversity of the students we serve. Some are paid from funds at the college.” “Does the database need to track which students qualify for which funding?” “No, = can handle that. =f = ca n just get the basic counts and statistics easily, it will make my life a hundred percent better.” Things You Should Know Types of database Relational databases can serve different needs for different users. These different needs can require different setups and structures. Transaction Database — a database that is optimized to keep track of transactions such as sales or purchases in real time Hands ON Database 67 One common usage of a relational database is as a Transaction database. A transaction database, as its name su ggests, records the data from immediate transactions such as sales or orders in real time, as they happen . These databases can be attached to a point of sale at a cash r egister or they can be behind web forms such as at Amazon.com or Ebay. Transaction data bases are optimized for speed and efficiency. Nobody wants a long wait while his or her order is being processed. Also, given the global nature of business, it is essential that many of these databases be as available as possible, preferably 24 hours a day seven days a week. Another common use for a database is as a Management Information System (MIS) . The purpose of a MIS is to use the data to provide data managers need to manage an organization. A management information system focuses on data analysis. It is used to query data to return reports on things like total monthly sales, number of products sol d, total shipping costs, etc. The MIS bases its reports on the data gathered by the Transaction database. In a simple situation like the tutoring program where the number of users is relatively small, the Transaction database and the MIS database may be t he same physical database. But in enterprise organizations they are usually separated. They types of queries that a MIS runs to retrieve the data for reports would slow down the performance of the transaction database more than is acceptable. So, typically , the data is periodically copied or shipped from the transaction database to the Management Information system. Increasingly, DBMS software is including tools for Business Intelligence. Business Intelligence moves beyond management systems. Business intelligence systems mine data for patterns and trends that Management Information System — a database optimized for queries that return summary information about transactions Business Intelligence — a set of tools for analyzing trends and patterns in business data Hands ON Database 68 might help a business improve its offerings or services. A company, for instance, might analyze its customer data to find the ages and incomes of the customers who buy a particular product. They might look to see what other products those customers have purchased in a six month period before or after the purchase of a particular product. They might look to see if they can spot a trend related to current advertising or a current event. Data Mining, exploring data sets looking for useful trends, is related to the idea of Data Warehouses. The concept of a data warehouse is to bring together all the data that an organization generates, not just the transactions that are recorded in formal d atabases, but also the memos, letters, minutes from meetings and other documents any organization generates. The data warehouse brings them all together in a way and a place where data can be extracted and compared. The concept of the data warehouse is obviously very attractive, but it has proven very difficult to bring about in practice. New RDBMS’s have included tools to inc orporate more heterogeneous data such as documents, but it is still difficult to compare data from the different sources. One development that holds the promise of making data warehousing a reality is xml. XML is a set of technologies based on Unicode. XML is marked up text that follows a few simple rules. Ideally, an xml document is self describing, that is the markup tags tell a user what the text between consists of. Data Mining — using business intelligence techniques on a variety of data sources brought together in a Data Warehous e XML — marked up Unicode text that fol lows a few strict rules — increasingly used as a file format for documents and data transferal Things to Think About Why do you think the idea of data warehouses and data mining hold such an attraction to organizations? What are some of the advantages an organization could get from using Business Intellegence tools? Hands ON Database 69 Increasingly business documents are saves as XML. (It is now the default format for Mic rosoft documents.) Tools have been developed for querying XML, allowing a user to extract and compare pieces of documents. RDBMS systems have also added data types and tools to store and manipulate XML documents. These developments may make data warehousi ng a fully realized business tool. XML will be dealt with more thoroughly in Chapter 10 . Sharon stands up. “Thank you. Looking at these reports will help me a lot. They give me a much better idea of what kind of data the database needs to track and store. Do you think I could get some copies to look at? I think I would also like to see examples of reports you have to make to your funding sources.” Terry hesitates for a moment, “= think = can do that —but some samples might have confidential information on them .” “I understand. You can give me blank ones, or you can black out private information. I promise not to divulge any information that could even remotely be considered private. =’ll even sign something to that effect if you want.” “That shouldn’t be necessary. = will get copies of the things = showed you and the other reports and get them to you tomorrow. What’s next?” “Thanks, The nex t thing I really need to do is interview some of the tutors and, if possible, a student or two to get their perspective. It is a good idea to have some representation of all the stakeholders. Is there a good time to do that?” Things to think about The confidentiality of data in a database is a major issue for many companies. The database may contain private information about employees o r clients, or it may contain data that could competitors could use to gain a competitive edge. Can you think of some ways that you could assure a client that you will keep all their data confidential? Hands ON Database 70 Terry thinks for a minute. “We have a tutor’s meeting once a month. The next one is the day after tomorrow at 9:00 AM in Room 301. Would that work ?” “Yes that would work just fine, thank you.” “=’ll ask the tutors if they know of any students willing to attend.” Sharon pauses a moment, thinking and then asks “:ow long do these meetings last?” Terry says, “About an hour .” “And how many minutes can = use of it?” Terri thinks for a minute. “= think we can give you 45 minutes of it.” “Thank you. = will see you then.” Things You Should Know Interviews Interviews can be an excellent way of gathering information. They are especially good for asking “open ended qu estions.” Open ended questions are questions that don’t have a definite answer. You can ask things like “What is the best thing about the current system?” or, “ what would you most like to see out of a new system?’ You can also ask questions like “describe what a typical sale is like,” or “walk me through the process of registering a new customer.” There are several things to think about when conducting interviews: You need to make sure you capture the points of view of every stakeholder group. It is not en ough to get the manager’s perspective on what a database should contain and do, you also need to get the Open ended questions : Questions that don’t have a fixed answer, that involve getting a participants opinion or thoughts on a topic Hands ON Database 71 perspective of the people who are going to work with the data every day. You need to get the opinions and needs of the IT people who will have to supp ort and maintain the system. It is also likely that you will want to get some reaction and ideas from customers who will also be affected by the new system. Often it is a good idea to get these opinions in separate interviews. You don’t want those who wor k with the system to be intimidated or influenced by their managers. But if you can’t do the interviews separately, try to get as many different groups of stakeholders together as you can and, if possible, arrange an outside facilitator —someone with no sta ke in the system, whose whole purpose is to make sure the process unfolds as fairly and completely as possible. If you are conducting the interviews, it is absolutely vital that you be prepared. Know what questions you want to ask ahead of time. Know how m uch time you want to devote to each question. Also know how much time you can allot for follow -up questions or clarifications. Layout the rules and timelines at the beginning of the interview so that everyone understands the process. During the interview y ou must act as a facilitator. As such, your chief responsibilities will be to ask the questions and make sure everyone has a chance to respond. It is important to keep people on track and to politely cut them off if they veer too far from the subject or if their response is too long for the time allotted and will prevent others from having their turn. It is a delicate process, because you want as full an answer as possible. Because facilitating is such a complex task, you should not complicate it further by also being the note taker. If you attempt to take notes, you will find either that you have to pause the interview while you record the responses or you will continue with the interview and your notes will be incomplete. Neither is optimal. Assign this task to someone else, or use a recording device. Hands ON Database 72 Preparing for the interview That evening Sharon makes some notes for questions to ask during the interview. It is important that she ask the right questions. She jots down a few questions for the tutors. How do you set your schedule? How does a typical tutoring session go ? What do you enter into the topics covered section of the report ? How do you cancel a session ? Next she thinks of some questions to ask the students. How do you figure out what tutoring is available? How do you sign up for a session ? Would you be willing to enter demographic information to get tutoring ? Sharon takes out her laptop and works out an interview plan. Tutor Interview Total time : 45 minutes. Allow 5 minutes for introductions. Question For Time Allotted How do you set your schedule? Tutors 5 min utes How do you sign up for a tutoring session ? What would make the process easier? Students 3 min utes What do you typically put in the section of the tutor report labeled “Materials Covered?” Tutors @ minuteV How do you check to see if a student is in the class they are being tutored for? Tutors 3 minuteV Why do you sometimes not get the studentID number Tutors @ minuteV How do you cancel a session? Tutors ,Students C minuteV Hands ON Database 73 Would you be willing to enter your demographic information to get tutoring? Students 2 minute What is the number one thing you would like to see changed in the current system? Tutors, Students 8 minutes What part of the current system do you like? Tutors, Students 5 minutes Time for follow up questions Tutors, students 5 minutes Figure 13: Interview Plan Things to Watch Out For Always prepare for an interview. Conducting an interview without planning, at best, will result in an interview that is less focused than in could be, and, at worst, could result in an awkward disaster that could erode confidence in you and the database project. Sharon looks over the plan. It looks goo d on paper but it is a pretty tight schedule. She is going to have to keep close track of the time. She is also worried about keeping notes. It will be almost impossible to both keep notes and facilitate the session. Then she remembers a digital recorder s he had bought to record class lectures. She hadn’t used it much because she found she preferred to type the lecture notes directly into her laptop, but for this interview it would be perfect. Now she felt ready and could relax. The interview Sharon arrives a few minutes early for the Monthly Tutors meeting. She waits for a moment at the door of room 301, reviewing the questions and the timing in her mind. She was going to have to make sure the answers were concise which could be difficult. People tended to want to talk and go off on tangents and accounts of personal experience. Shortly after Sharon arrives, Terry walked up and opened the room. “Good Morning,” she said. Over the next five minutes several people arrived and took seats.
 When it is time for the meeting to start, Terry stands in front of the classroom and introduces Sharon. Hands ON Database 74 Sharon stands and smiles, “Good morning. = think the first thing we should do is introduction. Most of you probably know each other, but I would like to know you better. Just tell your name and what you tutor, or, if you are a student, give me your name and what subject you are getting tutoring for. We can start with you.” She points to a young man sitting in the back corner of the room. Sharon listens as each person introduces themselves. She jots down their first names as they do the introduction. There are nine tutors and two students. Sharon is surprised to learn during that one of the tutors is not a student at the school. He is in fact an MBA student from another school. T erry explains, “ Not all our tutors are students. We utilize people from the community and other schools who want to participate in our tutoring program. ” A tenth tutor arrives late. Sharon smiles as he enters and asks him to introduce himself. Then, wit h a glance at the clock, Sharon begins: “As Terry said, = am working on building a database to help keep track of tutoring. I hope it will make all your lives a little easier. To build it, I need to understand what you do better, and what you would like to see, so I am going to ask you some questions. We don’t have much time this morning, only about 30 minutes, so we are going to have to keep the answers pretty short. I will leave you with my email so you can let me know of things that you forgot about or d idn’t have a chance to tell me, or any questions you might have. Also, = am going to record your answers on my digital recorder, if no one objects. It will make it so I can focus on your answers.” Things to Watch Out for If possible use a recorder or have someone else take notes. It is almost impossible to facilitate a meeting and take notes too. Sharon asks her first question. On e tutor explains how she figures out her schedule. The hours she is in class are obviously unavailable. But she also looks at th e meeting times for the classes she is tutoring. It doesn’t make much sense to schedule tutoring sessions for when the students would be in class. Then Hands ON Database 75 she decides how many hours she can do based on her own class work and other activities. The other tutors nod in agreement. “That’s pretty well how we do it too.” Terry chimes in: “Tutors can work any number of hours up to the maximum of 15 a week.” Sharon looks at the students. “ Jason, Sandy, how do you sign up for a session and w hat would make the process e asier? ” Hason looks a Sandy, she nods so he answers first. “= go into the computer lab and look at the signup sheets, First I see what time slots are available, then I look at who the tutor is. If I can I choose a tutor I know and like. It can be really ha rd sometimes to see what is available. The sheets can get pretty messy and it’s can be really hard to read some tutor’s handwriting.” Sandy adds. “=t would be nice if there were some easy way to search for all the sessions that go with a class and see the time and tutors. It would be really nice if you could look ahead too. I would love to schedule a series of sessions for a month or more, but the sheets don’t go out that far.” “The next question is for the tutors and it is pretty specific. =’ve seen the re port forms you are supposed to fill out for each session and = was wondering what exactly you put in the box labeled “Materials covered?” A female tutor, Sharon glanced at the list to recall her name —Ann, replies: “=t varies, sometimes = put a subject in l ike ‘quadratic equations’, or ‘ratios’, sometimes = put in a specific lesson number.” Another tutor replies, “= teach English. = usually put down things like ‘paragraphing,’ or ‘agreement’ or ‘sentence fragments’. We don’t put down everything in detail, j ust the gist of what we covered.” Sharon thinks of a quick follow up question for Terry. “=s that enough? Do you get the information you need?” Hands ON Database 76 Terry nods, “Yes, = really only need a general sense of what was covered.” Sharon looks at her list of questions . “This one is for the tutors again. How do you check to see if a student is registered in the class they are requesting tutoring in? How about you, Nathan? ” She has noticed that Nathan, one of the tutors, seems to be a bit reluctant. He is sitting with hi s arms crossed in a protective stance, and his expression is not as friendly as most of the others. He takes a few seconds before he answers. “= usually don’t check. = generally trust the student s. We really don’t have a good way to check anyway. We don’t have rosters for the classes, and we can’t really look it up.” :e pauses again for a moment and then adds, “= like the current system. =t’s flexible and easy to understand. Everybody is familiar with it. I am afraid that changing things will just make it all more complicated” Sharon smiles and says, “That’s good to know. = reall y hope that, in the end, this database will make everyone’s life easier, but you can help keep me honest. =f something makes things more complicated as we develop this, let me know and we will see if we can fix it.” Sharon proceeds with the rest of the in terview questions. She finds out that StudentIDs are missed because the form is filled out after the session and sometimes the tutor forgot to ask for it before the student left. Also, Mary tells her that the forms can be turned in a couple of different w ays. They can be left after each session at the desk for Terry to pick up. They also can be kept by the tutor and turned in directly to Terry at the end of the pay period. Sh aron also realizes, hearing the discussion, that canceling Things to Think About Change, such as creating an new database, affect people’s lives at work. It means a change in the way they have always done things. Some people anticipate change with excitement, looking forward to a new and hopefully better way to do things. Others are less enthusiastic. Some are actually resentful or see it as a threat. Don’t be too quick to dismiss the negative attitudes. They may well have valid reasons for feeling as they do. What would be the best way to handle such resistance in an interview? Do you think it would help to try to anticipate some of the objections before hand? Hands ON Database 77 sessions was going to b e a complicated matter, one that she was going to have to follow up on. The two students present are willing to enter their demographic information and don’t have any concerns, but Sharon isn’t sure everyone will feel the same. The one thing everyone would like to see changed is the scheduling process. And, the one thing everyone liked about the current system was it flexibility. When the interview is over, Sharon glances at the clock. Three minutes to spare. She thanks everyone for their participation, tu rns off her digital recorder. Before she leaves the meeting to Terry she asks if any of the tutors would be willing to let her shadow them as they go through a couple of tutoring sessions. Mary Lewis said that would be fine. “When would you like to do it?” “When is your next session?” “Tomorrow at 11:00 A .M. in the computer lab.” “OK, =’ll meet you there. Things to Watch Out for Go over your notes or recording within twenty four hours. It is important to review them while the memory of the interview is stil l fresh. The Questionnaire Sharon still has some questions about how the students who use the tutoring services will interact with the database. She suspects it will be very hard to get an interview set up with enough students to constitute a representative sample, so she decides to create a simple questionnaire that the tutors can give their students after a session. Tutoring Services Questionnaire Hands ON Database 78 1. Would you be willing to enter demographic information such as gender and ethnicity to sign up for tutoring? a. Yes b. No 2. Would you be willing to list the classes in which you are currently enrolled? a. Yes b. No 3. Which is the most important factor when you are looking for a tutoring session to sign up for? a. The particular tutor b. The time slot c. Neither of the abov e 4. When you can’t make a tutoring session which do you do most often ? a. Leave a note on the schedule b. Contact the tutor by email or phone c. Contact the tutoring office d. Simply not show for the session 5. Which of the following best describe s the process of finding a session and signing up? a. Difficult and Confusing b. Not as easy as it should be c. Not too difficult d. Easy 6. If you could sign up on line, which layouts would you prefer. Rank them in order of preference a. __View all available tutoring sessions for all classes b. __View all available tutoring sessions for a specific class Hands ON Database 79 c. __View all available tutoring sessions for a given date d. __View all available sessions for a specific tutor She prints it out. She will show it to Terry after her session with the tutor tomorrow. Things to Watch Out for Make sure your questions are clear and not ambiguous. If possible have two or three other people review your questions to make sure they are asking what you meant to ask. Things You Should Know Questionnaires Questionnaires are best for “close ended” questions. Close ended questions are questions that can be answered with a yes or no, by multiple choice or by ranking a set of values. They are good for quick assessments of processes or attitudes toward a system. Questionnaires have some advantages over interviews. They can be quicker and easier to arrange than interviews. They can also be less expensive because they take les s of the stakeholder’s time. With interviews, you can get responses from a wider number of stakeholders. Questionnaires can be easier to summarize and evaluate than interviews. Closed ended questions : M ultiple choice, true and false, ranked value questions — questions with a definite answer. Hands ON Database 80 But they also have some disadvantages. For one thing it is harder to evaluate the accuracy or honesty of the response. In an interview, you ha ve all the nonverbal clues to guide you, and you have the ability to ask an immediate follow up question. With the questionnaire you have only what is on paper. Also questionnaires are not good for open ended and complex questions. Generally people don’t w ant to write long blocks of text in response to a question. Interviews and questionnaires are, of course, not exclusive. Both can be useful. If you use a questionnaire there are a couple of things of which to be careful. First, make sure your questions ar e not ambiguous. Words can often be taken to mean two or more entirely different things. You know what you mean, but with a questionnaire you won’t be there to clarify. =t is always a good idea to have two or three people read your questions and make sur e that they are indeed asking what you meant them to ask. Secondly, make sure you get a representative response. That is, make sure that your questionnaire is given to enough people in enough different situations in order to get the fairest and most accura te response. Tutors at Work The next day at 10:55 A.M. Sharon shows up at the computer lab. Mary Lewis arrives at the same time.
 They greet each other and Mary begins explaining the process. She walks over to ward the clipboard. “The first thing = do is look at the schedule here to see if anyone is signed up. I also look to see if I know the student. =f =’ve worked with them before, it helps me have some idea of what they need.” Things to Think About Consider the following question: What are the top 5 things you do at work each day? Would this work better as a question in an interview or on a questionnaire? Why? Hands ON Database 81 Sharon thinks about that a second. “That’s got to be hard. English is a big subject. How do you know have any idea what a student is going to need?” Mary laughs, “=t’s not really that bad. Tutoring is always tied to a specific class. So, I know what the instructor covers in that class and have a pretty good idea of what most stude nt’s have trouble with. “ They have to wait for a moment because a student is rummaging through the papers. He looks a little frustrated. Mary offers, “Can = help?” :e looks up. “= am looking for a math tutor.” “What class is that?” “Math 110.” “= think H ohn tutors for that class. Let me look.” She scans the sheets. “Yes. :e has two one session this afternoon a nd two tomorrow afternoon. Here: ” She points out the sessions on the paper. :e sign s his name under the first one. “Thanks. They should make it easi er to find what you need. Thanks again.” “Now = can see what we have going today.” She glances at the paper. “Looks like = have a new student today, a Mark somebody —= can’t really read the last name.” Mary goes to the desk and gets one of the Tutor Session Report Forms. “= always fill this out first thing. Some tutors don’t bother to fill them out until their due for payroll. That’s hard. =t is almost impossible to remember everything.” She enters her name, the date and the time. As she finishes she glances at her watch. “Looks like Mark is running late.” Sharon asks, “ Does that mess up the rest of your schedule?” Hands ON Database 82 “No, if = have another session immediately after, = will just cut his short. =f = don’t have one right after, = might go a bit long.” “So you may be working more than you’re getting paid for?” Mary Smiles, “=t balances out.” Mark shows up and apologizes for being late. Mary asks him to spell his last name so she can put it on the form. The she introduces Sharon. “She’s watching me today to get some ideas for a database, if that is alright with you.” “Sure, no problem.” “What can = help you with today?” Mark is having a problem with the bibliography for his research paper. Mary leads him over to a computer reserved for tutors and begins to show him how to cite different types of sources. When the session is finished, she says, “Well, Mark, = hope that helps.” Mark replies, “Thanks, yes, that does help very much.” After he leaves, Mary enters the materials covered in the Tutor Report Form. Sharon asks, “What do you do with the report form when you are done with it?” “That’s a go od question. You can give it to the people at the desk to pass on to Terri, but nobody does that. The desk workers are busy and it’s easy for them to mislay a piece of paper. So generally we just keep them ourselves until they’re due. “ “=t must be pretty easy to lose them that way too.” “=t can be if you aren’t organized —and some of the tutors aren’t. They can have troubles sometimes. ” Hands ON Database 83 “Do you have another session today?” Mary nods. “Yes, in a couple of hours. = have class in between.
 Let’s take a look.” Mary goes back to the clipboard and searches through the papers. “Looks like nobody is signed up yet.” “You get paid anyway, rig ht?” “Yes, “ Mary says, “but the problem is, if over half your sessions go unfilled for a month, Terri will reduce the number of sessions you can offer.” “= didn’t know that. =s that a rule that always applies?” “Yeah, it’s a rule, though Terri might let i t slide for an extra month if you think you can get business to pick up.” Mary reaches into her notebook and pulls out a sheet of paper. “:ere, Terry gives this to all the tutors. =t states some of the basic rules. = am surprised she didn’t give it to you. ” Sharon glances at the paper: Things to think about Can you think of some other insights you can gain by observing people actually working with the data? Business managers may actually want some common exceptions to the process to be eliminated, for business reasons. But, how do you think workers would react to a database application that enforces strict procedural rules without any room for exception? Hands ON Database 84 “Thanks you, this is really helpful. I will meet you back here for the next appointment. Just out of curiosity, what do you do if no one shows up?” “Usually, = just work on my own homework.” Things You Should Know Work Shadowing It is important to see ho w the data that your database is going to store is actually used in day to day business process es. You can ask people to describe what they do, and you can review the procedure manuals, but there is no substitute for actually watching people at work. There are several insights you can gain from this: One is to see the actual flow of data, how it is captured, how it is transmitted to the next stage, how it is transformed or changed in the process. It also lets you observe how frequently something is used, a nd its relative importance. Perhaps the most important thing work observations can provide you is information about exceptions and undocumented Your Responsibility as a Tutor Schedule your availability every two weeks. You can tutor a maximum of 15 hours in a week. Show up for every session even if no students are scheduled and stay the length of the session Fill out a session form for every session Turn in all session forms on the 10th and 20th of each month Never do a student's homework for them. You are there to help them understand how to do their homework:
 If it comes to my attention that you have been doing student's homework, you could lose your tutoring privileges. If you have fewer than half of your sessions filled in a 4 week period you will be asked to reduce the number of sessions you offer. Hands ON Database 85 processes. When people describe their jobs they tend to describe the main activities they are supposed to do, th e ones that match their job description. They tend to forget all the little things they do that are not part of the job description, shortcuts, or exceptions. “Well, = am supposed to give this to Hill and then she gives it to John, but Jill is very busy, s o = usually give it directly to Hohn.” “Oh, we never charge Mr. Clemson a late fee. He has a hard time getting around since his stroke and we know he is always good for the payment, so we just wave the fee.” If your database rules are too strict to allow some of these kinds of exceptions it may prove too rigid to actually use. Documentation It is important to keep a record of your information gathering process. A list of the business documents you looked at, along with your questions and answers about each can prove invaluable later when you are reviewing your database for completeness. Summaries of interviews and questionnaire results are also, important. All these documents should be kept in a project notebook Things We Have Done In this chapter we looked over documents and reports to gather information about the data the database will need to store prepared an interview conducted the interview prepared a questionnaire followed a tutor to observe the actual work process Hands ON Database 86 Vocabulary Match the definition s to the vocabulary words: 1. Closed Ended Question 2. Domain 3. Business Intelligence 4. Exception 5. Form 6. Transaction Database 7. Open Ended Question 8. Procedure 9. Data Mining 10. Report 11. XML 12. Management Information System 13. Requirement 14. Data Warehouse 15. Stakeholder 16. Work shadowing a. Anyone who has a stake in the process b. A document for gathering data input c. A document for displaying summarized data d. A question that has no set answer e. A collection of all the various types of business information including databases and docume nts Hands ON Database 87 f. A multiple choice question g. A set of tools for analyzing business trends h. Something the database needs to do to be successful i. An alternate way of doing a process j. Marked up Unicode text that follows a set of a few strict rules k. A database optimized for queries that summarize transaction data l. The official steps and rules for completing some process m. The purpose or subject of a database n. Combing data in a variety of formats for trends and patterns o. Observing workers handling data on the job p. A database optimiz ed for storing and processing real time transactions Things to Look Up 1. Information Gathering is often presented as a part of a Systems Design and Analysis. Look up the Systems Analysis and Design Life Cycle. What are the parts of this life cycle? How do yo u think this relates to database development? 2. Look up “Hoint Application Development” or HAD. Briefly describe the process. Do you think this would work with Database Development? 3. Search for an article on Database Design. Does it have any discussion of inf ormation gathering? If so, what steps does it suggest? 4. What does the term Business Intelligence mean? What tools does the Microsoft Business Intelligence suite that ships with SQL Server contain? 5. Look up Management Information Systems. What are some of the features that are associated with such systems. Hands ON Database 88 Practices 1. Look at any common receipt from a grocery store or a restaurant. List all the potential data elements on the receipt. What abbreviations of terms don’t you understand? Make a list of questions you would ask someone if you were going to make a database to store this data. 2. Here is a report from a help desk database. R#: 44331 Status: In Process User: Michael Lawrence C#: NA Rm: 2176B P#: NA Date Entered 8/19/2010 6:00 PM Assigned to: David Betting Assigned On: 8/20/2010 11:00 AM Description: Please quickly install a computer from order 317026 (faculty ones in 3157) before Michael gets here to start work next week. Standard staff office setup, and we'll add his special needs after he's here. I think his old dead computer is there, but he migh t want something from it. Ticket is a level 1. T Notes: New computer is in place. Old computer is at my office. – M. Betting Figure 14: Help Desk Re port List the stakeholders that should be interviewed. 3. Using the form from practice 2, w hat abbreviations o r terms don’t you understand? Make a list of questions you would ask if you were going to make a database to store this data. 4. Create a questionnaire for the users of the form in practice 2 with 4 or 5 questions. Your goal should be to understand how and when they use the form. 5. Here is a form to create a new account at a web based company: *Email Address *Last Name Firs Name Address City State *Home Phone *Zip Code *Enter a password Hands ON Database 89 *Confirm Password *Enter a password Hint You have an interview with a manager at the company. List at least 3 questions you would ask him about this form. 6. You are going to create a database to track clubs and activities on campus. Make a list of some of the types of documents you would like to look at. 7. Tomorrow you are going to interview several students who belong to various clubs mentioned in practice 6 above, and their faculty advisors. You will h ave one hour to conduct the interview. Think about what questions you might ask and make a plan like the one Sharon made on page 20 for the interview. 8. Create a questionnaire with at least 5 questions to follow up on the interview in question 3. It will be distributed to about 20 classrooms on campus 9. Think about some job that you have held. Can you list two or three exceptions —that is, things you did that were different than the standard procedures, shortcuts or one time variations? (If you can’t think of a job, think of your classroom experience. Have you ever seen an instructor make an exception for a class or a student?) List the exceptions and briefly comment on why a database should or should not allow for each of them. 10. Think of a job you held, or, if yo u haven’t held a job, think of yourself as a student. What would somebody doing a job shadow on your day ob serve? Scenarios Each of the Scenarios have different requirements. Each is documented differently. Hands ON Database 90 As a follow up on your initial interview with the project coordinators, Wild Wood Apartments has agreed to show you some samples of various forms and reports. The first example is of a spreadsheet to keep track of leases at one apartment complex: Apt # LeaseNumber Lessee Name StartDate EndDate Rent Am ount Deposit Current 201 #201050109 Charles Summers 5/1/2009 5/1/2010 $ 1,500.00 $ 3,500.00 1 110 #110060109 Marilyn Newton 6/1/2009 12/1/2009 $ 1,200.00 $ 2,900.00 1 306 #306060109 Janice Lewis 6/1/2009 6/1/2010 $ 1,250.00 $ 3,000.00 1 102 #102060109 Larry Thomas 6/1/2009 6/1/2010 $ 1,250.00 $ 3,000.00 1 209 #209060109 Mark Patterson 6/1/2009 12/1/2009 $ 1,450.00 $ 3,400.00 1 The second example is of a spreadsheet used to track rent payments. Date Name Apartment Lease Number Amount paid Late 7/1/2009 Martin Scheller 203 #203011208 $ 1,200.00 7/1/2009 Roberta Louise 311 #311060108 $ 1,400.00 7/1/2009 Sue Tam 111 $ 1,400.00 7/1/2009 Laura Henderson 207 #207020209 $ 1,350.00 7/1/2009 Thomas Jones 110 #110010109 $ 1,200.00 7/2/2009 Shannon Hall 205 #205010109 $ 1,350.00 7/2/2009 Bob Newton 104 #104030209 $ 1,250.00 7/9/2009 Dennis Smith 209 $ 1,400.00 X The third is an example of tracking Maintenance requests and responses Ap t Date Problem type Resolution Res Date BExpense Texpense 303 7/5/2009 Left burner out on range electrical Electriction rewired 7/10/2009 $ 150.00 $ - 201 7/5/2009 Water damage from overflowing bathtub floor Replaced flooring new tile 7/21/2009 $ 200.00 $ 350.00 101 7/6/2009 Dishwasher backing up plumbing filter clogged cleared it 7/6/2009 $ 35.00 $ - 207 7/15/2009 Hole in plaster walls Patched hole 7/17/2008 $ - $ 250.00 Hands ON Database 91 113 7/15/2009 Refrigerator failed utilities new refrigerator 7/20/2 009 $ 690.00 $ - Finally, here is an example of the report that each apartment manager must turn in to the main office quarterly. Wild Wood Apartments Quarterly Report Building# #12 Address 1321 EastLake, Seattle, WA. 98123 Quarter Spring Year 2009 Total Apartments Currently Occupied Percent No. changing tenants 45 40 89% 13 Revenues Total Rent Revenue 175,500.00 Expenses Utilities 2,450.00 Maintenance 11,298.00 Repairs 9,790.00 Insurance 5,340.00 New Tenant cleaning 10,400.00 Wages 19,200.00 Total Expenses 58,478.00 Unrecovered rents 3,200.00 Hands ON Database 92 Total Profit/Loss 113,822.00 Job Shadow Report: I followed Apartment Manager for the Eastlake Apartments, Joe Kindel , for four hours on March 1 st, 2010. =t was the day the rents were due. Hoe’s apartment is also his office. The first thing he did after he opened up and let me in was pick up a locked box that was chained to the floor just outside his apartment door. “The Tenan ts can drop in their rents here” he told me. Joe took the box inside unlocked it and pulled out the checks while his computer started up. When it was ready he began entering the renter’s names, apartment numbers and payment amounts into a spreadsheet. Whil e he was working a tenant came in and handed him a check. He thanked them and added it to the pile. When he had finished he checked his list against a list of tenants. He told me that three had not paid their rent yet. He called each of the three. The fi rst did not answer so he left a message. “= am not too worried about him,” Hoe told me. “:e isn’t always on time, but he always pays within the 5 day grace period.” = asked about the grace period. Hoe answered me, “The Company allows a renter to be up to 5 days late without a penalty. =f you pay after that there is a $100.00 penalty tacked on to the rent.” He called the second renter. She was at home and asked if he could wait until the 10 th. Joe said OK and then explained to me, “She’s an older woman and d ependent on Social Security and retirement checks. I give her a little more leeway. The Company lets me because she has lived her forever and has always been a good tenant. This last one though is just no good.” :e picked up the phone and called. :e got no answer and there was no answering machine. Joe told me that he was about ready to evict this last tenant. He is habitually late and he is actually two months behind in his rent. Joe tells me how difficult it is to actually evict someone. Hands ON Database 93 While he is telli ng me stories about past evictions, the phone rang. A woman in apartment 211 told him that her stove wasn’t working Hoe opened a second spreadsheet and entered some of the details. :e also wrote some notes on a pad of paper. He reassured the woman that he would deal with it quickly and promised to come by in the afternoon. After four hours, I thanked Joe for his time and left him to his lunch. To do 1. Make a list of questions that you would ask about these forms and reports 2. Identify the stakeholders for Wild Wood Apartments. 1. Create a plan for an hour long interview with representatives of these stakeholders . Then meet with the instructor to discuss possible answers to the questions. 3. Create a questionnaire of at least 5 quest ions for the managers of the 20 apartment buildings. 4. Look at the Job shadow report. Do you see any exceptions to the general rule s? Do you see any new business rules uncovered? What additional questions arise from the report? Vince hasn’t kept very comp lex records, but he does have a few things he can show you. The first thing he has is an example of the notes he takes when he purchases an album from a customer. Date 5/14/2009 Seller Name Seller Phone Album Notes cond paid John Raymond 206.555.2352 Rubber Soul Amer. Not British vers. 2nd edition, good Sleeve fair 4 Hands ON Database 94 Marylin Tayler 206.555.0945 Led Zepplin IV Not orig. Sleeve damaged, viny l good good 4.75 Jennifer Louis 206.555.4545 Gift of the flower to the Garder Rare Donovan, box set, box cond poor, but vinyl excellent excellent 12.25 Laura Hall 206.555.2080 Dark Side of the Moon good 4.45 Here is an example of a sale to a customer : Date 5/12/2009 Customer Album price Tax Total John Larson Dylan, Blond on Blond 19.95 1.65 21.60 Tabitha Snyder America $ 5.95 Joni Mitchell, Blue $ 6.25 Joan Baez, Ballads $ 4.20 $ 1.36 $ 17.76 Brad Johnson McCartney, Venus and Mars $ 5.00 $ 0.42 $ 5.42 Maureen Carlson Decemberists, The Crane wife $ 15.50 Muddy Waters $ 7.75 1.92975 $ 25.18 Job Shadow Report I sat with Vince for a full day of work. The morning was quiet and Vince spent the time sorting through a stack of albums that he had purchased earlier in the week. He took each one out of the sleeve and inspected it carefully. “Sometimes = catch things th at = didn’t see when = actually purchased it,” he explained to me. “=t is too late now, of course, to do anything about it, but = want to be fair to the people = sell it to.” :e put a sticker on the cover and put “good” and a price of $6.50. = asked him ab out how he classified and priced things. He told me he had four levels: mint, good, fair, poor. Mint was only for things that were nearly perfect. Good meant there were no scratches and the vinyl was not warped and not too worn. Fair meant the vinyl was a bit more worn and might have a light scratch or two. Poor Hands ON Database 95 meant the vinyl was scratched and probably warped. :e didn’t buy poor vinyl unless it was an extremely rare album. Prices were based on what he thought the album would bring. He based it mostly on experience. After a while a customer came in. He asked if Vince had seen a copy of an old album. He commented that he didn’t think it had ever made the transition to CD. Vince said he had seen it, but he didn’t have a copy currently, but if the customer wan ted he would take his name and number and let him know when he next got a copy. The customer agreed and then, after looking around for about 20 minutes, returned to the counter with 5 albums. Vince wrote down each album title and the price and then added t he prices on a hand calculator. The total came to $35.50. Vince said. “Make it thirty and we’ll call it good.” Vince explained that it was good for business. It made the customer feel good and they were more likely to come back. Several more customers cam e in and their transactions followed a similar patter n. In the afternoon a customer came in with a stack of albums he wanted to sell to Vince. Vince went through the albums, taking each one out of its sleeve and inspecting it. In the end split the albums into two piles. He told the customer he was interested in the first pile of about 12 albums and would offer him $20.00 for them. The customer pulled one album out of the pile Vince had selected and said “= thought this one might be worth a little more. =t is a first print.” Vince looked at it again. “Yes it is, but it is scratched and only in fair condition. Still, =’ll make it $25 dollars if that makes it seem more fair to you.” The customer agreed. Vince told him he wasn’t really interested in the second pile of albums. The cus tomer could either take them back or Vince would put them on his 5 for a dollar pile. The customer chose to leave them. Vince put the albums in a pile by his desk. Several more customers came and went. Vince chatted pleasantly with all of them. Several purchased an album or two. At about f our, Vince turned the open sign in his window to closed and I thanked him for his time and left. Hands ON Database 96 To do 1. Study Vince’s sample notebook entries. Make a list of question you would ask about the data in them. 2. =dentity the stakeholders in Vince’s record store. 2. Prepare an interview with Vince and two of his best customers. One who both sells albums to Vince and buys, and one who mostly just buys. Then meet with the instructor to discuss possible answers to the questions. 3. Create a questionnaire for those who sell albums to Vince about changes they would like to see in the process. 4. Look at the Job Shadow Report for Vince. Do you see any exceptions? What additional business rules do you see? What additional questions does the report raise? The software management team has several spreadsheets to keep track of software. They show you several samples. The first is just a listing of software: Software Version Company License type Windows Vista Business, Service Pack 2 Microsoft MS Site MS Office 2007 Microsoft MS Site Visual Studio Professional 2008 Microsoft MS Instuctional PhotoShop CSS3 Adobe Adobe1 FileZilla 5 FileZilla Open Source German 2.5 LanguageSoft LanguageSoft1 The second is a key to the different licensing agreements and types: Hands ON Database 97 Licence Type Start Date End Date Terms Pricing pricing unit MS Site 7/1/2005 7/1/2010 can install as many copies as needed on campus and on laptops controlled by the school. Includes all service patches, updates and version changes 12500 5 yrs Ms Instructional 7/1/2005 7/1/2010 Use for instructional purposes only. Cannot be used for school development projects 3000 5 yrs Adobe1 7/1/2009 7/1/2010 reduced price per installed copy, Max of 25 active copies 450 per active copy Open Source 7/1/2009 7/1/2020 Free for use as long as registered 0 LanguageSoft1 7/1/2009 7/1/2010 25 copies 5200 for 25 copies Here is an example of the list of who has what software CCS# Location Assigned User 3214 Rm214 Cardwell Software Install date Rmv Date Vista Business 5/3/2008 Ms Office 5/3/2008 PhotoShop 6/4/2008 DreamWeaver 6/4/2008 CCS# Location Assigned User 3114 Rm212 Larson Software Install Date Rmv Date Vista Business 4/15/2008 MsOffice 4/15/2008 Visual Studio Pro 6/12/2009 DreamWeaver 6/14/2009 7/12/2009 And, finally here is sample of a request for new software: Hands ON Database 98 Requests CCS# User req Date Software Reason Response Res Date Status 2123 Johnson 5/20/2009 Camtasia I am conducting several on line classes.
 I need to be able to create visual demos to post to the class web site We don't currently have a license for Camtasia but will explore aquiring one 5/24/2009 Pending Job Shadow Report I spent the day on 4/12/2010 following Sheri , a member of the software management team at Grandfield College. The first thing she did after settling into her office was check a spreadsheet that listed pending installations. She showed me the list and told me that she had about six installations to do this morning. She also noted that it was the most boring part of her job. “Nothing like watching the progress bar on the monitor for hours at a time, “ she said. Next she checked her emails. There were three r equests for additional software. She opened a spreadsheet and entered the request information. She told me that she would check later to see if the school had the software or if it was something they would have to purchase. If it was a purchase she would h ave to get permission. She replied to each of the emails to acknowledge their request. After noting the requests, she looked again at the installation to be done. She went to a cupboard and pulled out some disks. She told me that some software can be insta lled from a network drive, but for some she has to bring the media. She also grabbed a notebook. We went to the first office. She spoke for a few moments with the woman who occupied the office. They laughed at a few things. Sheri said that with luck the in stallations should take no more than 30 minutes. The woman left the o ffice to let Sheri work. Sheri logged into the computer as administrator and slipped in a DVD. She started the install. Hands ON Database 99 I asked her about the notebook. Sheri told me that she carried it for two reasons. If there were any problems with the install that she couldn’t solve, she would write down the error messages and take them to the other techs to resolve. She also would note in the book whether the installation was a success or not. She di dn’t put it in the spreadsheet until the installation was complete and successful. The rest of the morning, Sheri moved from office to office installing software. On that day, at least, there were no major installation issues. While we waited she told me a bout other days that didn’t go so easily. She told me about how difficult it could be to troubleshoot a bad install, how obscure and undocumented settings could require hours of research before they were discovered and resolved. The installations were fini shed by lunch. After lunch, Sheri checked with receiving for new software and packages. There were several that had arrived. Sheri carefully unpackaged each arrival and noted it in a spreadsheet. Then she checked the licensing agreements. Some she knew, ot hers she had to check, often looking up the licensing agreement on -line. “Everybody is different,” she told me. “Some let you install the software anywhere on site. Some will only allow a certain number of copies. Some can be placed on a server, some only allow client installations. Some are tied to a particular user. It would make my life easier if things were consistent.” Late in the afternoon Sheri received a call for an instructor requesting disks for a piece of software. She told him sure, if he would come up and get it. He arrived at the door shortly afterward. She gave him the disks and made him sign for them in a notebook. “=’ll have them back to you tomorrow morning, ” he said. Sheri explained, “There are two or three instructors who have administrat ive privileges on their machines. They do their own installations and their own support.” = asked if they track the software on those instructors machines. Sheri told me that they do as best as they can, but the instructors can do pretty much as they want. To get the admin privileges they have to sign a release saying they won’t Hands ON Database 100 violate any licensing agreements and that they accept the fact that the school IT staff will not support their computers. Following this it was time to quit. Sheri shut down her co mputer. I thanked her for allowing me to follow her and said good evening. To Do 3. Study the forms above. Make a list of question you would ask about the data in them. 4. Identity the stakeholders in the Software tracking system. 5. Prepare a plan for a one hour interview with representatives of the stakeholders listed above. Then meet with the instructor to discuss possible answers to the questions. 6. Create a questionnaire for faculty and staff about changes they would like to see in the request process. 7. Review th e job shadowing report. Do you see any exceptions? Do you see any additional business rules? What additional questions does the report raise? The drug study is unique in many ways. For one, the forms and the type of information they capture is more comp lex. For another , privacy rules make it difficult to shadow doctors or researchers . But, still, if you are going to create a database, you must begin to gather the requirements and figure out what data is needs to be tracked. Here is the initial medical form that each patient is asked to fill out: Initial Medical History Form Hands ON Database 101 Name ______________________________ Date__________________ Birth Date ___________________________ Address__________________________________ City_____________________________ State___ _______________ zip_____________ Phone__________________ email__________________________________ List any prescription or non -prescription medicines you are currently taking ___ ___ List any know allergies to medicines __ _______ _______________________________ Have you ever been told you had one of the following? ___ Lung disorder yes no ___ High blood pressure yes no Heart trouble yes no Group no.:________________________________ Nervous disorder yes no Disease or disorder of the digestive tract yes no Agreement no.:____________________________ Any form of cancer yes no Disease of the kidney yes no Diabetes yes no Art hritis yes no Hepatitis yes no Malaria yes no Disease or disorder of the blood? (describe)_______________ Any physical defect or deformity? (describe)_______________ Any vision or hearing disorders? (describe)________________ Any life -threateni ng conditions? (describe)_________________ Any contagious disorders? (describe)______________________ How would you describe your depression? a. Severe and continuous b. Severe but intermittent c. Moderate and continuous. d. Moderate but intermittent When did your depression first begin? _______________________ Hands ON Database 102 Which of the following symptoms have you experienced Sleep difficulties Loss of appetite Loss of libido Inability to leave house Anxiety in social situations Thoughts of suicide Briefly Describe your history of depression. Include any earlier attempts at treatment. ___ ___ ______________ ___________________________________ Is there a history of Depression in your family? Yes No If yes, explain __ The next form is the form the doctor would fill out for each patient visit. Patient Visit Form Vitals Blood Pressure _________ Weight _______________ Pulse _________________ Does the patient believe his/her depression Has increased Decreased Remained the same Check all symptoms the patient has experienced Hands ON Database 103 Sleep difficulties Loss of appetite Loss of libido Inability to leave house Anxiety in social situations Thoughts of suicide List any additional symptoms or side effects ___ _______ ___ Doctors Notes Recommendation: Continue with study Drop from study If drop, explain -___ Job Shadow Report. The doctors and the directors of the study were relunctant to have me observe them with an actual patient, but one of the doctors, Dr. Lewis, did agree to sit with me and walk me through the process of a patient visit. “The first thing = do in the morning ,” he told me, “is review the day’s appointments.” :e turned on the computer and showed me the way it is done currently. The secretary sends an email with a table of the patients and times of the appointments. He prints out the list and then goes to his ca binet to pull out Hands ON Database 104 the files of the individual patients for review. He reviews their initial medical history and the notes of previous visits, He makes some notes on a notepad for each patient. When the first patient arrives, he greets them and ask s how t hey are doing. He told me he keeps it casual, but he notes any complaints or signs of deepening depression. Then he goes through the parts of the patient visitation form. The nurse has already taken their blood pressure, heart rate and weight. He looks at them and if the blood pressure is high, or if there has been a dramatic change in one of the measures since the last visit, he asks the patient about it. The he asks about their depression. :e doesn’t necessarily use the exact words of the form or follow it in order, but he makes sure he covers all of it. He records a few notes in a notebook while the patient talks, but waits until the patient leaves to write most of the summary. He also waits until the end to make his recommendation to continue or to drop the patient from the study. I asked Dr. Lewis how he makes that determination. He told me that it is a judgment call. Most of the time it’s in the patient’s interest to continue with the study, but if the patient is showing signs of significant side effec ts or if the patient seems in eminent danger of doing harm to themselves, I would recommend the patient be dropped and give alternative or more aggressive treatment. I asked if there were any other reasons for dropping a patient. He said that some patients were dropped from the study because of lack of participation, because they didn’t show for appointments or were inconsistent in taking their medications. He also noted he always worried that that those patients were possibly the most depressed and needed the most help. To do 1. Study the forms above. Make a list of question you would ask about the data in them. 2. Identity the stakeholders in the Drug Study. Hands ON Database 105 3. Prepare for a one hour interview with representatives of the stakeholders listed above. Then meet with t he instructor to discuss possible answers to the interview questions. 4. Create a questionnaire for Doctors about what they thing would help improve the process . 5. Review the Job Shadow Report. Do you see any exceptions? Do you find any additional business rul es in the account? What additional questions does the report raise? Suggestions for Scenarios =t is obvious these scenarios don’t have all the information that you need. Focus your questions on making sure you understand all the bits of data you will need to make your database. You, your team, if you are working with a group, and your instructor can decide on the answers to these questions. As you discuss possible answers, several real world issues may arise that add a great deal of complexity to the data base design. Handling some of these complexities can be a good exercise, but students and instructors should feel free to simplify where needed. Too much complexity can be overwhelming to someone just beginning to develop databases. Hands ON Database 106 Chapter Three : Requirements and Business Rules Having gathered all t he information about the database she can , Sharon must figure out what to do with it. She decides to review her notes to identify all the issues with the current system. First she looks again at the issues with the current database. This helps her refocus on the purpose of the database.
 Then she lists the requirements for the database. Next she clarifies the business rules that define how the data is gathered and used. Wi th all this analysis done she begins to identify the specific attributes the database must contain. She reviews the materials including the forms and reports and identifies the key nouns. Then she begins organize them into entities and attributes. Finally she identifies some candidate keys for the entities. Outcomes: Identify the issues with the current database Define and list requirements Define business rules Search materials for nouns to define entities and attributes Identify candidate keys for entitie s Getting Started Sharon feels a bit overwhelmed by all the information she has gathered. How is she going to organize it in a way that makes sense and helps her determine the structure and design of the database ? She pulls out a notebook and tries to sketch a plan of action. It is not easy. She decides to give her instructor, Bill, Hands ON Database 107 a call. Luckily, he is in the office and picks up the phone. She explains her dilemma. “= need a plan , some way to make sense of all this material.” Bill thinks for a moment and then says, “:ere is what = usually do: = go through the materials and identify all the issues with the current system. That helps me get the purpose of the database back in focus. Usually the reason for develo ping a database is to fix those issues. Next, I look at all the requirements. What exactly does the database need to do ? Remember to look at it from each user ’s perspective. Then I would go through the materials and identify all the business rules. The rul es can give you clues as to what data must be included and how people will use it. Some of it can be incorporated into the database and some will need to be implemented in the client application that will need to be developed at some point. Does that help? ” Sharon replies, “Enormously, = don’t know how to thank you enough.” Bill laughs, “No problem. Hust make a good database.” Things You Should Know Client/Server Relations A server is a program that makes a “service” or resource available for a “client” that requests it. For instance, a web server makes a web page available to a browser that requests the page to view. Some computers are called “Servers.” Generally this mean s that they are optimized to run server software. They often have more processing power and memory than other computers. They also often run an operating system that has tools to monitor and balance service requests such as Windows Server 2008. Server — a program that offers services to requesting programs Hands ON Database 108 Most databa se management programs also act as servers. They make database resources such as data available to the programs that request it. The requesting program is called a client. The client could be a web page or a windows program or even another database request ing data. It is important to note that what makes a server or a client is the relationship between them: A server provides services requested by a client. The server and client can be on the same physical machine, or they can be on separate machines in di fferent parts of the world. Figure 15:Client \Server Typically users access the database through a client application such as a Windows program or a web page. Most users do not have the skills or the patience to navigate a relational database to find the data they need. They require an application to query the Browser Database Web Server Request web page containing data Request for data and reply Return web page with data Client — a program that requests a service from a server Hands ON Database 109 database, to return and organize the data in ways that they can use. In addition giving users direct access to the da tabase poses numerous security risks and issues. Database design is one major task. Designing the client application or applications for the database is another major task. In chapter eight we will briefly explore some of the tools and processes involved i n creating a simple client application for the Tutor database Review of the Issues Sharon pulls out her notes. She looks at the notes from her first discussion with Terry. Terry had mentioned a couple of issues with the current system. For one, she found i t difficult to determine student demographics for her reports. For another, Terry noted that sometimes it was difficult to determine even how many hours an individual tutor worked in a given time period. The interview had revealed additional issues. Tutors sometimes found it difficult to keep track of report sheets. They didn’t fill them out on time, or they lost the papers before the turn in date, or they turned them in late. Students found it difficult to locate the right tutor for their class on the sign up sheet. Next Sharon reviewed the results of her questionnaire. She had received about 80 responses which was quite good. She had spent some time and summarized the results. She looked at that summary sheet now. About 80% would be willing to enter demogra phic information including ethnicity . 95% would be willing to enter their current classes About 70 percent said the time slot was the most important factor; 25% said the tutor and 5 % said neither of the above Hands ON Database 110 Of Students who canceled a tutoring session 30 % said they left a note on the schedule form. 12% said they called the desk and about 5% said they called the tutoring office. 15% said they simply didn’t show. 28 of the Students put an NA and several of them also noted they had never canceled a session For question 5 on the difficulty of signing up 40% found it confusing, 30% found it not as easy as it should be, 23% said not too difficult and 7% said easy The consensus on ways to look for sessions was b, c , d, a The que stionnaire reinforced the idea that locating an appropriate session and signing up are important issues Finally, Sharon reviews her notes from her observation of tutoring sessions. The issue of the difficulties students’ experiences signing up recurred again, plus the occasional difficulty of reading a student’s name from the schedule. A couple of additional issues were uncovered. Tutoring times can overlap, run long or be cut short. Sharon wonders if this is just inevitable, or if so me mechanism can be built into the scheduling to help fix it. Th e last issue she notes is that Mary said there were different ways to turn in the tutoring report. Either the tutor could turn in the report at the computer lab desk, or the tutor could hold t he reports and turn them into Terry on the due date. Sharon believes having two ways to turn in the reports contributes to the issue of lost or late reports. Sharon sits down and jots down the issues she has uncovered: It is difficult to get and track demo graphic information it is difficult to summarize and confirm individual Things to Think About It is always good to review what you have already done. Database development is iterative process.
 You have to constantly go back and refine what you have already done. What do you think would be some of the dangers of just forging ahead in a purely linear way? Hands ON Database 111 tutors tutoring hours A related issue: getting the tutoring session reports filled out and turned in on time It can be difficult to find an appropriate tutoring session in the paper s chedule It can be difficult to read the schedule Times can overlap, run long, or be cut short Sharon sits back. T hese are the issue her database will be designed to solve. Just to be sure, Sharon reviews the original Statement of work again. In the History section it says This system has worked and continues to work, but it has several significant problems. For one, it can be difficult for students to find appropriate tutoring sessions. The paper forms are difficult to navigate and understand. Additionally, it is very difficult for the tutoring program to track the students using the tutoring. It is difficult or impossible to track demographic information. It is also difficult to assure that students are enrolled in the courses they receive tutoring in. Even tracking tutors’ hours can be difficult. Her review has revealed the same issues that were identified in the original statement of work. So now that she is confident she understands t he problem domain, she is ready to move on. Requirements The next thing Bill said to do was to go through her notes again and identify all the requirements, the things the database must do. Once again Sharon returns to the Statement of Work. The Scope section lays out the general requirements clearly: Problem Domain — the business problem the database is meant to address Hands ON Database 112 The tutoring database will manage data for the tutoring program at the college. It will track available tutors and the courses they can tutor. =t will also track each tutor’s tutoring schedule. The databa se will store demographic information for students who register for tutoring. This information will be private and used only generate general reports which include no personal information. Students, who have registered, will be able to sign up for availabl e tutoring sessions for courses in which they are enrolled. The database will track whether students attended their scheduled sessions. It will also track student requests for tutoring in additional course and subjects. He also noted that she should look a t it from different user’s points of view. What does the database need to do for the tutor? What does it need to do for Terry? What does it need to do for the student? The next step is to work these requirements out in greater detail. Things You Should Kno w Requirements A database requirement is something the database needs to have or do in order to meet the business needs of the organization for which it is being built. For instance, in the tutoring database, if Terry needs to make reports on student gender and student ethnicity, then the database must have attributes that store those values. It is a requirement of the database. Another requirement might be that, for legal and privacy reasons, the personal data of students must be secured so that only those with valid reasons and permission can view or edit it. There are different kinds of database requirements: Requirement — Something the database must do in order to meet the business needs of an organization Hands ON Database 113 Data requirements . That is what attributes the database must contain in order to store all the information an organization needs for its activities . To record a point of sale transaction, for example, the database would need to have attributes for the sale number, the date, the customer, the items and quantities purchased and the prices of those items among others. Report requirements . Most databases need to generate several different kinds of reports, summary information often gathered from several different entities. The entities must contain the dat a needed to make these reports , as above, but also be related in a way that makes it possible to bring the various pieces of data together. This is a function of relational design which we shall look at in detail in the next chapter. Access and Security Requirements . Often some, or all, the data in a database is confidential. Database s typically contain core business information that could be of great value of to a competitor, or it may contain things like credit card numbers or social security numbers th at could pose financial and legal risks if revealed to the wrong people. An essential requirement of most databases is to develop a security schema that determines who has access to what data.
 Anyone without the proper authentication credentials should be excluded. Chapter Two looked at most of the techniques for gathering requirements: interviews, questionnaires, review of documents, and job shadowing. From those it is necessary to distill the requirements into a usable list. One of the techniques, used in this chapter, is to look at the requirements in terms of each user who will interact with the database. What does the database need to do and contain for that user to successfully complete his or her tasks? The chapter starts with the higher level approac hes , looking at the general requirements first and then getting down to the detail of what attributes and entities the database needs to contain. This approach can help organize what is admittedly a complex task. Hands ON Database 114 Finally, it is essential to review the req uirements you find with those who will be using the database. Having a full understanding of the requirements is crucial if you are to develop a successful database.
 Leaving out requirements, even small ones, may render the entire database useless to the o rganization . Thinking about this, Sharon remembers that Professor Collins had told her to make sure that she looked at the requirements in terms of each of the stakeholders for the database. That gives her a place to start. First she will look at the tutors. What does the database have to do for each tutor? She writes out a list: Allow tutors to enter their monthly schedules Allow tutors to view the schedule to see which sessions have students signed up Allow tutors t o cancel a session Allow tutors to fill out and submit a session report She ponders for a moment trying to decide if there is anything else the database has to do for tutors. It has to allow their hours to be tracked for payment. But that’s requirement see ms to belong more to the Tutor Administrator. Sharon decides to list all the requirements she can for students next. For students the database must: Allow student to register for tutoring (includes entering demographic data and current courses) Allow the student to view session schedule Allow the student to sign up for session Allow student to cancel a session Sharon isn’t sure of the last one. Are students allowed to cancel their own sessions? She will have to check with Terry when they review the require ments together. Hands ON Database 115 Thinking of Terry, Sharon decides to list the requirements for the Tutoring Administrator next. For Terry the database must: Allow her to view session schedules Allow her to add and remove tutors Allow her to add and remove courses Allow h er to view student requests Allow her to view and summarize session reports Sharon thinks about this for a moment. There are other reports Terry needs to view, besides just reports on the sessions. And it might be possible that she needs to be able to gene rate new reports. Sharon adds a few more items to Terry’s list of requirements: View and generate reports Summarize tutor hours for payroll There a couple more actors who will be involved in the database. In addition to the Tutoring Administrator, there will need to be a database administrator. She or he will need to maintain the database by backing it up regularly, and will need to maintain it sec urity, especially for student information. IT staff members will need to make the database available over the network and secure access to it. Sharon decides not to diagram these for the moment. Hands ON Database 116 Another set of requirements involves Access and Security. Sh aron knows that she will have to fully develop these in the database itself, but for now she just makes a few notes. First she looks at the Access requirements for Terry: The database administrator should have select access to the all the data. That means he or she can view all the data in the tables. The database administrator needs to be able to add, edit and remove records for tutors and courses The database administrator should be able to create queries as needed The database administrator should not be able to create or remove tables or other database objects? The last one she will have to check with Terry , but her basic instinct is that no one except the database administrator should be able to add or remove database objects. Things to Watch Out for It is essential that you include security considerations in your planning from the beginning. Too often developers wait until after the database has been designed and developed to think about the security issues of a database. Adding security as an aftertho ught can result in an insecure database, vulnerable to data theft or to accidental violations that can result in a loss of data integrity. Next she thinks about the tutor: A tutor needs to be able to enter and edit their own schedules but no one else’s. A tutor needs to be able to enter a session report A tutor needs to be able to cancel one of their own sessions, but no one else’s. A tutor should not be able to see student information. Hands ON Database 117 Lastly, she looks at students: A student must be able to view all available s essions A student must be able to enter their own demographic information A student must be able to enter the courses in which they are currently enrolled A student should be able to cancel one of their own sessions, but no one else’s. Things to Think Abou t Access and Security Security involves determining who has access to database objects and data, and what kind of access they should have. The following table lists some of the types of access a user can have. Each type of access also represents a set of SQL commands. SQL will be covered in more detail in Chapter Six and Security in Chapter Seven. Table 3: Types of Database Permissions Type o f Access Description Create The permission to make new database objects such as tables or views Alter The permission to modify database objects Drop The permission to remove database object Select The permission to see data in a table or view Update The permission to modify data in a table Insert The permission to add data rows to a table Delete The permission to remove data rows from a table Execute The permission to run database executables such as stored procedures Things to Think About For the moment, disregard any malicious intent by a user. What do you think would happen to the data in a database if every user could access and change every other user’s data? User Access — refers to what objects and data in a database a user has permission to use. Hands ON Database 118 Looking at the Use Case Diagrams, Sharon makes a list of all the requirements she has identified. The database must: Allow tutors to enter their monthly schedules Allow tutors to view the schedule to see which sessions have students signed up Allow tutors to cancel a session Allo w tutors to fill out and submit a session report Track and summarize tutor hours Track and summarize student demographic data Track and summarize Tutoring sessions by subject area Allow the administrator to view session schedules Allow the administrator to add and remove tutors Allow the administrator to add and remove courses Allow the administrator to view student requests Allow the administrator to view and summarize session reports Allow student to register for tutoring (includes demographic data and cu rrent courses) Allow the student to view session schedule Allow the student to sign up for session Allow student to cancel a session Secure student demographic information Hands ON Database 119 Sharon looked over her requirements. Do they provide the data needed to resolve all the issues she had identified ? It should be easier for Terry to get demographic information.
 Most students will enter it and those that don’t will need to at least enter their student id. That will make it easier to look them up on the school’s system. Th e session entity data should make it easy to track tutor’s hours and the session usage. =t should also make it much easier for students to locate appropriate sessions by time, class and tutor. She isn’t sure it will help with the sessions running over time , but the database should solve most of the issues. Business Rules Sharon is starting to feel a little better. Listing the requirements is a big step toward being able to design the database. Next she needs to list the business rules. Business rules, she k nows, are rules about how the data is captured and used and what limits or constraints are placed on the data. Some of these rules can be enforced in the database and some will need to be built into the client application that is built on the database. Onc e again she looks through her notes. Things You Should Know Business Rules Business rules describe the rules that govern the way data is acquired , stored and used by the business. They are important database developer must make sure the database he or she develops can support all the business rules and operations. Some of the business rules can be enforced directly in the database.
 For instance, consider a database to track students’ grades and grade point averages. =f the school is on a 4 point system most databases will support putting a “constraint” on the grade column that limits the value to a number between 0.0 and 4.0. A database developer can also limit the length of a column. If Business Rule — a rule that covers the way data is acquired, stored or processed. Hands ON Database 120 all states are to be represented by the two letter abbreviation, then the length of the column can be set to two. There are several other ways to enforce rules within the database as well. But some kinds of rules require extra programming to enforce. If a library has a limit of 20 items out at a time, for instance, there is no way to enforce this rule in the data table. =t is possible though to create a “trigger” which will query the database every time someone checks out an item to see how many items are currently out. It can then flag or block a checkout if it exceeds the number of items. (We will talk more about triggers and procedures in a later chapter.) Still other business rules can only be enforced in the client application through which users will interact with the database. First, she knows the database is going to create a couple of new rules: Every student must register for tutoring and they must enter their current courses. As part of that registration students will be encouraged to enter their demographic information. As Sharon understands it, they can’t be forced to en ter it, but she will check back with Terry. Students must be registered in the courses they want to be tutored for. Those are some of the business rules that apply specifically to Students. Next Sharon tries to identify the business rules that apply to Tutors. Here Sharon finds she still has some major questions. Do tutors enter their own contact information? She assumes that Terry will want to control that information. Are all tutors also students? She remembers from the interview that one of the tuto rs was an MBA student from a different college, so not all tutors are students. S he know s that tutors enter their schedules every two weeks and that they are limited to 15 hours total a week. Tutors are paid for scheduled sessions even if no student shows up. She also knows from the form she was Trigger — database code, usually written in SQL, which exec utes when “triggered” by an event such as an insert or a delete Hands ON Database 121 shown while job shadowing, that if a tutor has too many empty sessions the maximum hours could be reduced. In fact that was spelled out on the Responsibilities form. She shuffles through her papers until she finds it: “ If you have fewer than half of your sessions filled in a 4 week period you will be asked to reduce the number of sessions you offer. ” Now, thinks Sharon, “What do I know about t he tutoring sessions themselves?” She starts to list what she has learned : Students sign up for tutoring sessions Tutoring sessions are 30 minutes long Tutors fill out a Session Report for every session they are scheduled for even if no student is scheduled or the student doesn’t show Tutors must show up for scheduled sessions even if no one is signed up Some of the most puzzling aspects of the session for Sharon w ere the rules around canceling. From the interview she knew that Tutors could cancel a session if there was no one scheduled. If someone were scheduled they were requi red to try to contact the student scheduled. But what happened if the tutor couldn’t contact the student? She also knew students could cancel a session, but were there any limits to that? And, were there any penalties for frequent cancelations for either t he student or the tutor? She would have to ask Terry that. While thinking of Terry, Sharon tries to identify some of the business rules related to the administrator’s reports: Tutors hours are calculated from the Session schedule and Session reports Term reports are based on unduplicated student counts Sharon also releases she doesn’t know the rules for handling requests. Hands ON Database 122 Sharon makes a list of all the rules she has so far: Students must register for tutoring and enter their current courses Students are encouraged but not required to enter demographic data including ethnicity The Administrator will enter tutor information Not all tutors are students (so they won’t all have a student =D) Tutors are limited to a maximum of 15 hours a week Tutors are paid f or scheduled sessions even if no student is scheduled or if the scheduled student fails to show If over ½ of a tutors sessions have no students signed up over a 4 week period tutors may have their maximum weekly hours reduced Students sign up for tutoring sessions Tutoring sessions are 30 minutes long Tutors fill out a Session Report for every session they are scheduled for even if no student is scheduled or the student doesn’t show Tutors must show up for scheduled sessions even if no one is signed up Tuto rs can cancel a session if no student is signed up. If a student is signed up for the session they must try to contact the student A student can cancel a session Tutors hours are calculated from the Session schedule and Session reports Term reports are bas ed on unduplicated student counts Review of Requirements and Business Rules with Terry Hands ON Database 123 Sharon calls Terry and sets up an appointment for the afternoon. When she arrives Terry invites her in and offers her a chair. Sharon pulls out the printed Use cases s he made earlier. She tells Terry , “= made these diagrams to help review the database requirements. Sometimes pictures are much clearer than just words.” Sharon explains the elements of the use case and then goes over the diagrams one at a time. She also sh ows Terry her list of requirements. “Do they cover everything the database needs to do or did = forget something?” Terry studies them for a moment and then says, “That looks complete to me. I wonde r, though , if students should be allowed to cancel sessions .” Sharon responds, “Actually that brings me to a couple of questions = have about the business rules. The whole process of canceling a session is a bit confusing to me. As I understand it, a tutor can cancel a session if no student is scheduled. If a stud ent is scheduled they must try to notify the student. What happens if they can’t notify the student?” Things to Watch Out for It is critical that you review the requirements and business rules with the clients for the database. You need to ensure that you haven’t forgotten any requirements or misunderstood any of the business rules. It is also important that you document each of the requirements and business rules so that everyone involved is clear on what they have agreed to. Use cases and other diagrams a re an important part of documentation, but you should also write them out. Terry muses, “=t depends on the reason for canceling. =f it is possible to make the session the tutor should meet the student. Often, though, it’s not. =n that case we leave a note on the schedule and at the computer desk.” “:ow about the students? :ow do they cancel?” “Typically, they just don’t show up. Sometimes they call me or the tutor.” Hands ON Database 124 “=s there any penalty for missing a session?” “We have a general rule that if a student mis ses more than 3 sessions they are no longer eligible for tutoring, though it is not always enforced.” “Thank you.” Sharon pulls out the list of business rules. “= identified these other business rules. =f you could look at them and tell me what I missed or what = got wrong.” Terry nods, “Those look good to me.” Sharon asks, “The rule about reducing a tutor ’s hours —is that always enforced.” Terry smiles, “No, but we really can’t afford to have our tutors sitting around getting paid for doing nothing. If it i s a pattern, = do have to reduce the hours sometimes. =t is not necessarily the tutor’s fault. =t may just be that the students that term don’t need a tutor, or maybe they don’t know tutoring is available.” Sharon picks up the diagrams and the rules. Thank you, Terry. I think I am ready to start putting things together. The next thing = will show you will be the design for the database.” A Little Bit of Grammar Now that Sharon has got a clear sense of what the issues, requirements and rules are for the database, she feels ready to start brainstorming the major content of the database. The task is daunting though. Where does she start? She remembers a technique her professor Bill Collins taught them. She can start by just listing all the nouns she has en countered. She remembers her first list of topics Tutor Student Hands ON Database 125 Session Request Next she looks at the Tutor’s Report Form. Tutor Session Report Form Tutor Name Session Date Session Time StudentID Student Name (NA if no student signed up) Materials covered (NS if no show) Figure 16:Tutor Session Report Form There are several fields on the form . She writes them down: Student ID, Session date, session time, tutor name, student name , materials covered. She looks at t he scheduling form: Tutoring for the Week of 4/12 to 4 -16 2009 Monday Tuesday Wednesday Thursday Friday 9:00 AM TT: CL: ST: ---------------- TT: CL: ST: ---------------- TT: CL: ST: TT: CL: ST: ---------------- TT: CL: ST: ---------------- TT: CL: ST: TT: CL: ST: ---------------- TT: CL: ST: ---------------- TT: CL: ST: TT:Aimes CL:(Math 290) ST:Laura Jones ---------------- TT:Carson CL: (ITC 110) ST: --------------- Johnson (ITC 224) Shanna Taylor TT: CL: ST: ---------------- TT: CL: ST: ---------------- TT: CL: ST: Figure 17:Tutoring Schedule Form From it she can gather “tutor,” “Class” and “Student .” There are also time indicators for “Month,”, “week,” “Year”, “ time” and “ weekday.” Then she scans the reports Terry gave her. A lot of this material is summarized so it is a little harder to get information. The payroll report for instance is all summarized and calculated data. Hands ON Database 126 Figure 18: Tutor Payroll Spread sheet The main thing the database needs to provide for is the Tutor name or ID and the hours worked grouped by week month and year. Sharon remembers that as a rule, you should not store calculated fields in a database. You can always recreate the calculati on in a query and it will be more accurate because it is based on live data. The hours per week and the total hours can be calculated from the number of sessions a tutor has on the schedule. The form that Terry bases her reports on also contains a great d eal of summarized information. Report Statistics Fall Term 2010 Students Total Usage 2345 Workforce retraining 247 Unduplicated Usage 1735 Difference 610 Unduplicated Demogra phics Male 937 Female 798 Total 1735 Ethnicity White 868 AfAm 312 Tutor Pay For weeks beginning 4/6/2009 and 4/16/2009 Tutor Week1 Week2 Total Hours Wage Gross Pay Aimes, Tabatha 0.5 2 2.5 10.50 $ 26.25 $ Carson, Karen 8 10 18 10.50 $ 189.00 $ Johnson, Luke 3 4.5 7.5 10.50 $ 78.75 $ Lewis, Mary 1 3.5 4.5 10.50 $ 47.25 $ Sanderson, Nathan 3 3 6 10.50 $ 63.00 $ Stevens, Robert 4 5.5 9.5 10.50 $ 99.75 $ Totals 19.5 28.5 48 504.00$ Hands ON Database 127 Asian 312 PacIs 121 Namer 35 Other 87 Total 1735 By Subject Area ACC 139 BUS 121 ENG 347 HIS 139 ITC 139 MAT 607 SCI 243 Total 1735 Figure 19: Tutoring Statistics Report For a moment she ponders the word “unduplicated.” But, “unduplicated” is an adjective rather than a noun. It is describing something in the database, not a new elem ent in itself. But “Gender,” “Ethnici ty” “Worker Retaining,” and “Subject area” can count as nouns. Time also crops up again in terms of “Quarter” and “Year.” Things to Watch Out for It is easy to get the data attributes contain confused with the attributes themselves. An Attribute is a gen eral descriptor of an Entity. For instance, ‘Last Name” would be an attribute of a Customer entity, but “Hohn Smith” is data that would be stored in that attribute. Attributes are the column heads that describe the data. One way to think of it is that on a computerized form the attributes are in the labels and the data are what are entered into the textboxes . Sharon listens carefully to the notes she recorded during her interview with the tutors and students.
 Many of the same nouns show up. Sharon notes the noun “schedule.” It also appears in her notes about the observation of Mary’s tutoring session. Hands ON Database 128 Sharon lo oks at her list of nouns so far. tutor, session, student ID, Student name , session date, session time, tutor name, weekday, materials covered , class name, gender, ethnicity, subject area, schedule , term , year, month worker retraining, Subject area , reques t It is not a very long list but it is a place to start. The next step she knows is to list them into related groups. Again she can use the original big themes she identified as a starting place. She writes down the word tutor. Which elements go with tutor ? Tutor Tutor Name She thinks about Class name, but classes don’t just belong to the tutor. Students take classes and a tutoring session is focused on a class, so class must be a separate group. So now she has Tutor Class Tutor Name Class Name There are also student, session and request groups, of course. She adds the groups: Tutor Class Student Session Request Tutor Name Class Name Student ID Session Date Student Name Session Time Gender Term Ethnicity Year Month Materials covered That leaves “Schedule” and “Subject area.” From The report she knows that the subject area is broader than just the class. =t actually maps pretty well to the class’ department, such as ENG or Math. She places it with the Class group. “She wonders if “schedule” is just a synonym for “Session .” She decides to hold it aside for the moment. Another issue she sees is in Session . Quarter, Year and Month are really Hands ON Database 129 redundant. All that information can be gathered from the Date itself. She makes th e modifications and then scans her list so far: Tutor Class Student Session Request Tutor Name Class Name Student ID Session Date Subject Area Student Name Session Time Gender Materials covered Ethnicity She knows she can modify this list some. The student name and tutor name can be divided into first and last name. The class name can be divided into department, class number and section. She also knows she needs to add term and year. Sharon isn’t sure what additional demographic information Terry needs. She will have to talk to her again and get a precise list. She also isn’t sure how much information the database will need to store about each tutor. Again she will have to ask. She knows that a Session will al so contain at least a tutor, a student, a class and materials covered , so she adds them. Finally, she can sure that a request will contain a student name or ID, a class name and the date of the request. Now her list looks like this: Tutor Class Student Session Request Tutor First Name Class Name Student ID Session Date Class Name Tutor Last Name Department Student Last Name Session Time Request Date Class Number Student First Name Term Student ID Term Gender Year Year Ethnicity Month Section Materials covered Entities and Attributes Sharon looks at her lists of nouns. She knows that the big items, the group headings su ch as tutor, Class. Student, Session and Request will probably be Entities in her database design. The items listed under Hands ON Database 130 them will be attributes , or things that describe or belong to the entity. She also knows the list is not complete. It is only a beginning, but it does give her a good place to start when she gets down to the details of designing the database. Things You Should Know Entities and Attributes As was mentioned in earlier chapters, Entities are things that a database is concerned with, like students, inventory, orders, or courses etc. Attributes are aspects of entities. They are things that describe an entity or belong to it. Entities are a part of the logical design of a database. The logical design is independent of any Database Management System. =t doesn’t take into account any of the implementation issues such as file locations or sizes, or database tuning and efficiency. Logic de sign is concerned only with defining the entities, their attributes, and their relations to other entities. One of the great features of logical design is that it is the same no matter what software or operating system you are using. Most entities will become tables in the final database, but there is not always a one -to-one correspondence. Entities, attributes and relations will be covered in much greater depth in the next few chapters. Candidate Keys Although she knows it is early in the process, Sharo n decides to start identifying some potential keys. She knows that keys are used to uniquely identify each record in a database and to relate records to each other that are stored in different tables. So she begins trying to find some candidate keys. Hands ON Database 131 Things you Should Know Candidate Keys Ideally, every entity should have a key attribute —one attribute that uniquely identifies an instance of that entity. Candidate keys are attributes that co uld possibly be used as identifying attributes. There is much discussion as to what makes a good candidate. It must be unique. That means it can never occur twice in the same entit y. Last names, for instance, don’t make good candidate keys. =t is far too p robable that more than one person will share the same last name. Telephone numbers might make a good candidate key, if all that needs to be unique is the household. Many web sites use email addresses. If there is no good candidate key singly, attributes c an be combined to form a “composite key.” For example, in an Appointment entity in a database tracking dental appointments, the date is not unique because several people could have appointments on the same day. The date and time together are not necessaril y unique, because more than one appointment could be scheduled at the same time. The date, time and patient name or ID should be unique however. In combination they are a candidate to be the entity’s key. Keys that are based on attributes that belong naturally to the entity are sometimes called “Natural keys.” Many advocate the use of Natural keys b ecause they protect data from accidental duplication. No two households, for instance, should have the same telephone number. If you accidentally enter a household a second time, the database management system will throw an error because the phone number o f the second row will conflict with the uniqueness requirement of a primary key. Others argue, however, that all keys should be arbitrary. They argue that it is very difficult to always find a natural key and that often designers have to resort to Composite Key — a key that consists of more than one attribute Natural Key — a key made from one or more of an Entities “natural” attributes Surrogate Key — an artificially created key, often just auto - incremented numbers Hands ON Database 132 awkward composite (multi -attribute) keys that add to a database’s redundancy. =nstead, t hey advocate just assign ing a number to each instance of an entity . These are sometimes called “Surrogate Keys.” Surrogate Keys guarantee that the key will always be unique. Ho wever it provides less protection against accidentally repeating an instance. A new instance (row) could be identical in every aspect except the key attribute. There will be much more discussion of these topics in later chapters She starts with Tutor. Wh at would uniquely identify a tutor? The tutor’s name is one idea, especially if you combined the first and last names. There are not a lot of tutors and the chance of any two tutors having exactly the same name is slight , but it does exist. Although it i s not listed, students, have a student ID which could be used to uniquely identify each student. Most tutors are also students and would have a student id, but not all tutors are students. Perhaps there is some sort of employee I D. She will have to ask Te rry. Each course has a unique name so that could be a potential key for that Entity. For the session, the sessi on date or the session time, perhaps in combination , could be a key, but that wouldn’t really be unique because different tutors could have sessions on the same day at the same time. If the tutor ID was added to the key, that could be unique. After all the analysis, Sharon feels ready to get to work on the logical design of the database. What we have covered In this chapter we have: Revisited the problem domain by reviewing the issues with the current system Developed a list of requirements for each user using UML Use Cases Reviewed the business rules for the tutoring database Hands ON Database 133 Reviewed the materials collected in the previous chapters and extracted nouns that may be come entities and attributes Organized the nouns into preliminary entities and attributes looked for attributes that could serve as candidate k eys —that is, attributes that could potentially work as primary keys for the entities Things to look up 1. Look up UML on the web. What are the other types of diagrams? 2. What is the current version of UML? 3. Look up two or more definitions for “Business Rule s.” 4. Look up an article on the web that discusses natural vs. surrogate keys in databases. Which does the author prefer? 5. What are some additional plusses or minuses of each? Vocabulary 1. User Access 2. Server 3. Surrogate Key 4. Actor 5. Requirement 6. Natural Key 7. UML 8. Client Hands ON Database 134 9. Trigger 10. Composite Key 11. Business Rule 12. Use Case 13. Problem Domain a. A program that requests a service b. A key that consists of more than one attribute c. Unified Modeling Language d. A program in SQL that is triggered by a database event e. A use that a particular us er has for a database f. A program that offers a service to requesting programs g. A key based on one or more “natural” attributes of an entity h. A rule about how data is acquired, stored or processed i. The general problem area with which a database is concerned j. An artificial key, often just an incremented number k. Something a database must do to meet a business need l. A person or program that makes some use of the database m. The permissions a user has to use or view database objects and data Practices Use the following sc enario for each of the practice exercises: Hands ON Database 135 You have been asked to build a database for a pet foster and adoption shelter . The agency is a non - profit that takes in stray or abandoned pets and places them with foster care givers until the pet is adopted. Fo ster care givers are volunteers, though they must first be screened. The database needs to track all animals in its care, their species, breed, name and condition. It also needs to track all approved foster care givers and which animals are currently in th eir care. Foster care givers are also supposed to turn in monthly reports on the animals in their care. The database also needs to track the adoptions of the animals. Currently, volunteers come into the shelter and fill out a paper form. After a background check they are added to a file. Some volunteers complain that they are never contacted again. The shelter staff admits, they tend to go with foster care givers they know and some people get forgotten in the file. The shelter has also occasionall y lost track of an animal in foster care when the care giver failed to turn in the monthly reports. Another recurring problem is that when someone comes into the shelter looking to adopt, it is not always easy or even possible to let them know about all th e animals available for adoption. Ideally the shelter would like people to be able to register as a volunteer on -line. They would like to be able to call up a list of all available foster volunteers. They also would be like to be able to pull up all the an imals of the kind a potential adopter is interested in and know exactly where those animals are and who is caring for them. 1. Make a list of some of the major issues with the current system used in the shelter 2. Identity who the major actors are and list them 3. Make a use case diagram for each of the actors showing how they would interact with the database 4. Make a list of business rules for the shelter. Hands ON Database 136 5. Make a list of all the nouns and break them up into entities and attributes 6. Identify some candidate keys Scenar ios The Wild Wood Management team is ready to see some results. You have a meeting with them at the end of the week. It is time to analyze and organize all the information. Look back at the material from the last chapters. 1. Make a list of issues with the current system . 2. Make use case diagrams that show the database requirements for each stakeholder involved in the database . 3. Make a list of business rules. 4. Take at look at each of the forms and make a list of all the nouns in them. Do the same for the interv iew, the questionnaire and the Job shadow report. Then set up some preliminary entities and attributes . 5. Identify some candidate keys . Hands ON Database 137 You are eager to show Vince some progress on the database. You sit down to analyze all the materials you have gathered to see if you can make some sense of them. Make sure you review the material in the previous two chapters. 1. Make a list of issues with the current system. 2. Make use case diagrams that show the database requirements for each stakeholder involved in the databa se. 3. Make a list of business rules. 4. Take at look at each of the forms and make a list of all the nouns in them. Do the same for the interview, the questionnaire and the Job shadow report. Then set up some preliminary entities and attributes. 5. Identify some candidate keys. It is imperative that the college get the software tracking database on -line as soon as possible. You have assured the management team that you will be able to show some progress very soon. It is time to set down and review all the forms and materials. 1. Make a list of issues with the current system. 2. Make use case diagrams that show the database requirements for each stakeholder involved in the database. 3. Make a list of business rules. Hands ON Database 138 4. Take at look at each of the forms and make a list of all the nouns in them. Do the same for the interview, the questionnaire and the Job shadow report. Then set up some preliminary entities and attributes. 5. Identify some candidate keys. The drug study is set to begin in just a few months time. It is important t o make some progress toward the database. It is time to gather all the materials you have collected and try to make some sense of them. 1. Make a list of issues with the current system. 2. Make use case diagrams that show the database requirements for each stake holder involved in the database. 3. Make a list of business rules. 4. Take at look at each of the forms and make a list of all the nouns in them. Do the same for the interview, the questionnaire and the Job shadow report. Then set up some preliminary entities an d attributes. 5. Identify some candidate keys. Hands ON Database 139 Chapter Four: Database Design Entity Relation Diagrams Having organized her materials and determined the business rules, in this chapter, Sharon begins the logical design of the tutoring database. Using Microsoft Visio, she defines the database entities, their attributes, and the relationships among them. Out comes By the end of this chapter you will be able to Use the database modeling template in Microsoft Visio Create Entities and add attributes Determine the appropriate relationship between entities Resolve many to many relationships with a linking table De signing the Database Sharon is ready to prepare the logical design of the database. The logical design, she knows is separate from any consideration of which DBMS the database is going to be developed on. =t also doesn’t take into accou nt how the files will be stored or accessed. It also ignores any features or limitations of the target DBMS. It is focused purely on the logical structure of the entities and their relationships with each other. Things to think about The logical design of a database is the same no matter what the RDMS is going to be. Physical design is specifically tailored to the features and limits of a particular RDMS What is the advantage of separatin g the logical from the physical design? Hands ON Database 140 For this process she is going to use the dat a modeling template in Microsoft Visio and create a new Entity Relation Diagram or ERD. (For a complete description of opening the Entity diagram in Visio see Appendix Three) Things you should Know Entity Relation Diagrams As the name suggests, an entity relation diagram (ERD) is a diagram of entities, their attributes and the relations among the entities. Most ERDs represent the entities as rectangles divided into three horizontal parts --the entity name, the primary key and then the other attributes -- and two or more vertical parts, the first containing information about keys and indexes , the second containing the attribute name . Figure 20: entity Attributes in bold are re quired attributes. Relationships between entities can be represented in different ways. In Microsoft Visio, the default way is as a line with an arrow on one end. The arrow always points to the one side of a relation, usually the Logical Design — The entity relation design without regard to what RDBMS or system it will be on Physical Design — the design adapted to the RDBMS and system constraints and features ERDs — Entity Relation Diagrams — one common method of depicting Entities and relations in a diagram EntityName PK PrimaryKey Attribute 1 Attribute 2 Hands ON Database 141 side with a primary key. We discuss all these concepts more below. Here is an example using the arrow headed line for the relationship: Figure 21; Arrow symbol for relationship. The relationship can also be represented in “crow ’s feet” notation. You can change the relationship representation in Visio by going to the Database menu, selecting Options/Document clicking the Relationship tag and then selecting the crow ’s feet radio button. Figure 22: Crow' s feet Option Building PK BuildingKey BuildingName Address City State PostalCode Room PK RoomKey RoomNumber RoomDescription FK 1 BuildingKey Hands ON Database 142 Th e crow’s feet notation actually conveys more information about a relationship than the arrow notation. Look at the following example that uses the same two entities but uses the crows feet notation. Figure 23: Crow’s foot notation The end with three lines is the “crow’s foot.” It is the many side of the relation. The straight line and 0 on the building or one side mean that a building can have zero to many rooms. The straight line befor e the crow’s foot indicates that every room must be associated with one building . Although it may seem a bit confusing at first, this book will use the crow’s foot notation. You will often encounter this notation in your database work, and it is good to get familiar with it as soon as possible. We won’t, however, in this book, worry about all the subtle nuances of the notation. Sh aron opens a new data model template in Visio and drags an entity symbol onto the grid. Building PK BuildingKey BuildingName Address City State PostalCode Room PK RoomKey RoomNumber RoomDescription FK 1 BuildingKey Hands ON Database 143 Figure 4: Selecti ng the Database Template She increases the zoom to 100% so she can see the entities better. She clicks on the new entity to select it and sets its name in the definition property: Tutor . Hands ON Database 144 Figure 5: Visio Entity Next she selects the columns property and ke ys in the first attribute name TutorKey . She clicks on the check box to make it the primary key. Right now Sharon isn’t worried about the data types of the columns. They are important, and in the design phase it is a good idea to have some sense of what da ta type a pa rticular attribute will require, but choosing specific data types belongs more to the physical side of database development. For now Sharon is focusing on identifying all the entities, attributes and relationships. We will discuss data types thoroughly in the Chapter Six . Hands ON Database 145 Figure 6: Primary Key attribute Now she types in the other attributes. She decides to use a naming convention that puts the entity name at the front of every attribute name. For instance, a every tutor wil l have a first name and a last name in the database so she names the attributes TutorFirstName , TutorLastName . It can get a bit awkward and make for long names, but it makes it clear which entity an attribute belongs to. Foreign keys, she decides, will be named the same as their corresponding primary keys. Things you should know Naming conventions Naming conventions vary book to book, individual to individual and company to company. The most important thing is to be consistent. Some people like to put “tbl” in front of all table names, but that doesn’t make sense for the logical design. Entities are not yet tables. Some people always name entities w ith a plural noun on the theory that each entity will contain multiple instances or rows. Others always name them with a singular noun on the theory that they are an abstract representation of an element of the database. Naming Conventions — a set of rules or suggestions that promote consistency in the naming of database objects Hands ON Database 146 Attribute names are another issue. Ideally no two attributes in a database should have the same name, with perhaps the exception of Foreign keys which often retain the name of the Primary key to which they relate. The problem is that many Entities have the same or similar attributes. A Cus tomer entity, for instance will have a LastName, Firstname, Address, City, etc.
 But an Employee entity also has these attributes. One way to differentiate them is to put the entity name in front of the attribute name or some abbreviation of the table name. Often these are separated with underscores, such as Customer_LastName or Cust_LastName. Key attributes are also a naming issue. Often the key attribute is called an ID, like CustomerID, or EmployeeID. Often the Foreign Key retains the name of the Primary key it relates to. But the foreign k ey doesn’t have to have the same name as its associated primary key. (=t does have to have the same or at least a compatible data type). If a Foreign key is not named the same as the primary key, it should be named something that makes it clear that it is, in fact a foreign key, and it should be clear what primary key it relates back to. This book uses the following naming conventions : Entities and tables are named as single nouns like Tutor , Student , Session Attributes are named with the entity name follow ed by the attribute name . There are no underscores between. Each new word is capitalized: TutorLastName , StudentLastName . This can make for long attribute names, but it makes for maximum clarity. Primary keys end with the work “Key: “ TutorKey , StudentKey . Foreign keys retain the name of the primary key. Things to think about Why do think it is important to be consistent in naming? What would be the disadvantage of not being consistent? What role do you think nami ng conventions could play in documenting a database? Hands ON Database 147 It is important to note that there is nothing standard about these conventions. There are many different conventions that are equally valid. The important thing is to be consistent and clear. Things to Wat ch Out F or A lack of naming conventions can lead to confusion and can make it much harder to maintain or extend a database A note about entities, attributes, tables and columns: Below is a table with some equivalencies Table 4:Term Equivalencies Logical Design Physical design Theoretical Entity Table Relation Attribute Column, field attribute Row, Record tuple Entities and attributes are used to describe the elements in Logical design. Most often, they become the tables and the columns or fields when implementing the database in a particular DBMS. A Row or record is one complete set of data —one customer, for instance, or one inventory item. “Relation” is a theoretical term for a table, and “tuple” is a theoretical term for a row of data. You can encounter these terms in more advanced books on database. Though these categories are not as absolute as the table might make them seem, we will try to be consistent in our use of terms . When Sharon finishes her Tutor entity looks like this: Hands ON Database 148 Figure 7: Tutor Entity version 1 Sharon looks at the entity for a moment. Something about it bothers her. Then it hits her. What if a tutor tutors for more than one course? She could modify the entity to look like this : Figure 8: Tutor entity revision 1 But as she looks at it she knows it is wrong. What if a tutor does only tutor for one class? That means two of the attributes would always be null. What if a tutor tutored for four classes? There would be no place to put the fourth one. And, she realized, if someone wanted to find out what tutors tutored a specific class, he or she would have to always query three separate columns to be sure. Also, if her memory serves her, the entity violates the first normal form. (Normal forms and Normalization will be covered in detail in chapter five.) Sharon revises the Tutor entity one more time. She realizes that course doesn’t belong to Tutor . It is an entity in itself, with its own attributes and its own key. She creates another entity called Course . Tutor PK TutorKey TutorLastName TutorFirstName TutorPhone TutorEmail TutorHireDate TutorCourse Tutor PK TutorKey TutorLastName TutorFirstName TutorPhone TutorEmail TutorHireDate TutorCourse 1 TutorCourse 2 TutorCourse 3 Hands ON Database 149 Figure 9: Tutor and Course Entities Sharon looks at the two entities, trying to determine what kind of relationship exists between the two. It puzzles her for a moment and then she realizes it is a many -to-many relationship. One tutor can tutor for many courses and each course can have many tutors. She smiles as she remembers her instructor in class going over just this situation agai n and again. “Whenever you have a many -to-many relationship, you must always make a linking table.” Things You Should Know Relationships There are three kinds of relationships that can exist between entities: one -to-one one -to-many many -to-many One -to -one In databases, a one -to-one relationship is rare, but can be useful. A one -to-one relationship specifies that for each row in the primary entity there can be one and no more than one related record in the secondary entity. In a one -to-one relationship the p rimary key of the first entity is often the primary key of the second entit y. Tutor PK TutorKey TutorLastName TutorFirstName TutorPhone TutorEmail TutorHireDate TutorStatus Course PK CourseKey CourseName CourseDescription Hands ON Database 150 =n crow’s feet notation, one to one relationships can be represented in two ways: Figure 10: zero or one Figure 11: Ex actly one One use for this kind of relationship is to express a class/subclass relationship. Say a database is keeping a list of different resources. The resources can be in any of several different media and the attributes to describe each media are sign ificantly different. If you put all the attributes in the one Resource entity, each entry will have several nulls for the attributes it doesn’t need. To solve this you can break the Resource entity into several one -to–one relationships. Figure 10 one -to-one relationship Resource PK ResourceKey ResourceTitle ResourceType Video PK ,FK 1 ResourceKey VideoFormat VideoDateReleased VideoLength Book PK ,FK 1 ResourceKey BookPublisher BookYear BookCity BookISBN Magazine PK ,FK 1 ResourceKey MagazineName MagazineIssue MagazineVolume MagazinePage Hands ON Database 151 The entities above don’t include all the relevant attributes, just enough to show the relationship. Notice that each entity has the same primary key. That means each resource will appear once i n the resource table, and exactly once in one of the resource type tables. To get a clearer sense of this relationship, look at the following tables based on this design. Figure 11: Resource Table ResourceKey ResourceTitle ResourceType 235091 Database Programming with ADO Book 244088 PhotoShop Basics Video 200211 Data Binding with LINQ Magazine 202883 Relational Algebra Book Figure 12: Book Table ResourceKey BookPublisher BookYear BookCity BookISBN 235091 Westland Press 2005 San Francisco 123 -77 -6576 -X 202883 PL University Press 1998 Seattle 234 -11 -2345 -0 Figure 13: Magazine Table ResourceKey MagazineName MagazineIssue MagazineVolume MagazinePage 200211 Visual Studio Magazine March 2008 3 76 One -to-one relationships are also sometimes used as part of a security structure. A single entity may be broken into two entities. One will contain publicly viewable content and the second private content. For example, an employee’s information might be broken into two entities. The first one contains non sensitive content such as the employee’s name, department, business phone and position title. The second table contains sensitive material such as the employee’s social security number, home address, home phone and salary information. Ther e i s a one -to-one relationship between the tables. Each one employee has exactly one related record in the private table. Hands ON Database 152 Figure 1 24: One to One It should be noted, this is not necessarily the best way t o deal with security issues. There are many ways to allow the public aspects of the Employee entity to be accessed while protecting the private information. Creating a view or using a stored procedure (See Chapter Seven) to control which columns a user can access is generally a better strategy. One -to -Many Most of the entities in any relational database will have a one -to-many relationship. A one -to-many relationship means that for each record in the primary entity there can be many associated records in the secondary or child entity. There are two crow’s feet symbols for one -to-many relationships: Figure 1 25: Zero or More Figure 126: One or more For an example of a one -to-many relationship consider the relationship between a Department in a business and its employees. Each Department can contain zero or more employees. Each Employee belongs to one department. Employee PK EmployeeKey EmployeeDept EmployeeBusinessPhone EmployeTitle EmployeePrivate PK ,FK 1 EmployeeKey EmployeeSocialSecurity EmployeeAddress EmployeeSalary Hands ON Database 153 Figure 127: One -to-many relationship You only enter the department information once in the department table. You use the primary key to link the table to a child table by repeating it in that table as a Foreign Key. The foreign key can repeat as often as needed in the child table. Figure 128: Department Table DepartmentKey DepartmentName DepartmentPhone DepartmentRoom ACC Accounting (206)555 -1234 SB201 IT Information Technology (206)555 -2468 NB100 Figure 129: Employee Table EmployeeKey EmployeeLastName EmployeeFirstName DepartmentKey FB2001D Collins Richard IT BN2004N Faulkner Leonore IT NC2004M Brown Carol ACC LL2006O Anderson Thomas IT Things to Watch Out For It is important that you do not create a “cross relationship.” There is a temptation to think that because a department contains employees, the department entity should contain a foreign key for employee. Employee PK EmployeeKey EmployeeLastName EmployeeFirstName FK 1 DepartmentKey Department PK DepartmentKey DepartmentName DepartmentPhone DepartmentRoom Hands ON Database 154 Figure 30: Cross Relationship Error Doing this will create an impossible situation. In effect, a Department will only be able to contain a single employee. The second employee will create a conflict with the DepartmentKey which cannot repeat. This is a fairly common e rror among novice designers. =t often isn’t discovered until the attempt to enter data into the tables fails. Many -to -many Many –to-many relationships are common and they are legitimate relationships in logical terms, but no database can implement them. A many -to-many relationship means that each record in the primary entity can have many related records in a second entity and each record in the second entity can have many related records in the primary entity. The symbol for a many -to-many relationship h as a crows foot on both sides of the relationship: Figure 31: Many -to-Many Relationship Visio doesn’t contain a symbol for this relationship. Employee PK EmployeeKey EmployeeLastName EmployeeFirstName FK 1 DepartmentKey Department PK DepartmentKey DepartmentName DepartmentPhone DepartmentRoom FK 1 EmployeeKey Hands ON Database 155 For an example, consider the relationship between Subscribers and a n entity designed to store a list of various magazines. Each customer can subscribe to many magazines and each magazine can be subscribed to by many customers. That creates a many -to-many relationship. Figure 32: Many -to-Many relationship In any RDMS a many -to-many relationship must be resolved into two one -to-many relationships. This is done by creating a linking entity. In this case the Magazine and the Subscriber are linked by a Subscription entity. A subscriber subscribes to one or more magazines. A magazine can be subscribed to by zero to many subscribers . Often, as in this case, creating the linking entity reveals a forgotten or undiscovered enti ty, Subscription is more than a linking entity. It is a legitimate entity with attributes of its own. Subscriber PK SubscriberKey SubscriberLastName SubscriberFirstName SubscriberAddress SubscriberCity SubscriberState SubscriberPostalCode Magazine PK MagazineKey MagazineName MagazinePrice Hands ON Database 156 Figure 33: Linking table Below are tables that show how these entities would be translated into a database. These are, of course much simplified. A real database would contain many more columns of essential information such as the subscription length, the magazine type (is it weekly, quarterly, etc), the magazi ne publisher information, etc. Also for t he subscribers it would be necessary to distinguish between the billing address and the shipping address, since they are not necessarily the same. Figure 34: Magazine Table MagazineKey MagazineName MagazinePrice TM2K1 Time 35.50 NW2K1 Newsweek 36.40 Figure 35: Subscriber Table SubscriberKey Subscriber LastName Subscriber FirstName Subscriber Address Subscriber City Subscriber State Subscriber PostalCode 4231 Johnson Leslie 101 Best Ave. Seattle WA 98007 4333 Anderson Mark 1200 Western Blvd Tacoma WA 98011 5344 Manning Tabitha 100 Westlake Seattle WA 98008 Magazine PK MagazineKey MagazineName MagazinePrice Subscriber PK SubscriberKey SubscriberLastName SubscriberFirstName SubscriberAddress SubscriberCity SubscriberState SubscriberPostalCode Subscription PK SubscriptionKey SubscriptionStartDate FK 1 MagazineKey FK 2 SubscriberKey Hands ON Database 157 Figure 36: Subscription Table SubscriptionKey MagazineKey SubscriberKey SubscriptionStartDate 1004 TM2K1 4333 1/15/2009 1005 NW2K1 4333 1/15/2009 1006 NW2K1 4231 2/1/2009 1007 TM2K1 5344 2/15/2009 Sometimes, however, the linking entity only serves to resolve the many -to-many relationship. Consider the relationship between authors and books. Each book can have several authors and each author can author several books. This relationship can be resolved with a linking table as in the figure below: Figure 37: Linking table 2 It is not uncommon for a linking entity to have a composite key made up of the foreign keys from the two tables whose relationship it resolves . One other note: you may have noticed in the earlier diagrams most relationships are represented by dashed lines. The relationships above and the one -to-one relationships are represented as solid lines. Visio distinguishes between identifying and non -ide ntifying relationships. An identifying relationship is one where the foreign key in the child table is also a part of the primary key of that child table. For instance, AuthorKey is both a foreign key and part of the composite primary key in the Linking Entity — an entity which resolves a many -to -many relationship into two one -to -ma ny relationships Book PK BookKeyISBN BookTitle BookPublisher BookYear Author PK AuthorKey AuthorLastName AuthorFirstName BookAuthor PK ,FK 1 BookKeyISBN PK ,FK 2 AuthorKey Hands ON Database 158 entity Boo kAuthor. A non -identifying relationship is one in which the foreign key is not a part of the primary key of the child table. Below are some examples of how these entities would be translated into tables in a database. Notice how the Head First book has three Authors. Figure 38: Book Table BookKeyISBN BookTitle BookPublisher BookPubl isherYear 0-07 -222513 -0 Java 2 Beginners Guide Oracle Press 2002 0674019999 -1 After the Ice Harvard 2003 0-596 -00867 -8 Head First Object Oriented Analysis and Design O’Reilly 2007 Figure 39: Author Table AuthorKey AuthorLastName AuthorFirstName HSCHLT Schildt Herbert SMITHN Mithen Steven BMCLAU McLaughlin Brett GPOLLIC Pollice Gary DWEST West David Figure 40: Linking table BookAuthor BookKeyISBN AuthorKey 0-07 -222513 -0 HSCHLT 0674019999 -1 SMITHN 0-596 -00867 -8 BMCLAU 0-596 -00867 -8 GPOLLIC 0-596 -00867 -8 DWEST Things to Watch out for Always resolve a many -to-many relationship by creating a linking table. An unresolved many -to-many relationship will cause your database to fail. Composite Key — a key that consists of more than one column Surrogate Key — a random or arbitrary key often generated by just incrementing numbers Hands ON Database 159 Sharon adds a linking entity to resolve the many -to-many relationship . Figure 41: Linking table Now Tutor has a one -to-many relationship with TutorCourse and Course has a one -to-many relationship with TutorCourse , also. That is, one tutor can tutor for many courses and one course can have many tutors. The composite key, which consists of the two foreign keys TutorKey and CourseKey, ensures that the same tutor won’t b e linked with the same course twice. As she looks at her work, Sharon realizes that Student would have the same relationship with Course that Tutor does. One student can enroll in many courses and one course can contain many students. It is another many -to-many relationship. Sharon adds a Student entity to her diagram. She reviews the attributes carefully to make sure she has all the demographic information included. Then she adds the linking tables and makes the relationship. Here is her whole diagram so far: Tutor PK TutorKey TutorLastName TutorFirstName TutorPhone TutorEmail TutorHireDate TutorStatus Course PK CourseKey CourseName CourseDescription TutorCourse PK ,FK 1 CourseKey PK ,FK 2 TutorKey Hands ON Database 160 Figure 42: Student Course 1 In the Student entity, Sharon decides to specify ethnicity as a foreign key. Her idea is that she will create a lookup table for the different ethnicities. One big thing remains to be done. Sharon still needs define the tutoring sessions themselves. Many databases have a central entity where everything is tied together. For this database it is the Session entity. She reviews her notes. A session must have a d ate and time. It needs a course and a tutor. The student is optional because not every session that is available will be taken. She comes up with this entity diagram: Tutor PK TutorKey TutorLastName TutorFirstName TutorPhone TutorEmail TutorHireDate TutorStatus Course PK CourseKey CourseName CourseDescription TutorCourse PK ,FK 1 CourseKey PK ,FK 2 TutorKey Student PK StudentKey StudentlLastName StudentFirstName StudentPhone StudentEmail StudentGender StudentAge StudentCitizen StudentWorkForceRetraining EthnicityKey StudentCourse PK ,FK 1 StudentKey PK ,FK 2 CourseKey Hands ON Database 161 Figure 43: Session Entity She is a bit uncomfortable with a four attribute composite key, but it takes all four to uniquely identify a session, and she thinks Session won’t have any child relations. She is also unsure of the attribute session status. SessionStatus ,as she is thinking about it, would contain a valu e like “completed” if a student showed up and received tutoring, or “canceled” if they did not —or maybe “tutor canceled,” “student canceled.” She would also need a value if the session remained unused. Another issue with Session, she realizes, is that the re is a limit to the number of sessions a student can sign up for, and, for that matter, a limit to how many sessions a tutor can teach in a given time. She remembers that Bill, her professor, called these issues of cardinality. They can be important cons iderations for design and enforcing business rules, but generally they cannot be enforced in a database through the relationships themselves. Things to think about Composite vs Surrogate keys Composite keys provide better protection for data integrity because they prevent accidental entry of identical information, but they can get awkward and can result in more redundant information. Surrogate keys, like an identity or autonumber remove those data redundancies but do nothing to protect data integrity. Most database specialists choose one or the other, but all say don’t mix them. Which do you think is the better option? Session PK SessionDate PK SessionTime PK TutorKey PK CourseKey StudentKey StudentLastName SessionStatus SessionMaterialCovered Hands ON Database 162 Things You Should Know Cardinality Relationships can also have a property called cardinality.
 Cardinality refers to the number of allowed related rows between entities. The usual one -to-many relationship assumes that for each one record in the primary key entity, there can be any number of related rows in the Foreign Key entity. This is often expressed as with an infinity sign. But a one -to-many relationship can have limits on the number of related rows. For example, say an Account entity can have no more than five email addresses in a related Email entity. That would mean that the relationship has a Maximum Cardinality of five. Let’s also say that each account must have at least of one email account. That would make the Minimum Car dinality of the relationship One. RDMSs really don’t have ways to enforce cardinality rules directly. Usually these kinds of rules are enforced by means of triggers and other extra database code. Next, she adds a lookup entity for Ethnicity. Cardinality refers to the number of permitted records in a related entity. Maximum cardinality is the highest number permitted, minimum cardinality is the smallest number permitted Triggers are executable scripts of SQL code that are triggered by an event such as an Insert, Update or Delete. They can be used to enforce bus iness rules that cannot be enforced by database design alone Hands ON Database 163 Figure 44: Ethnicity Lookup Entity Things You Should Know Types of Entities As you have seen in the discussion above, entities can play various roles in a database. It can be useful when designing a database to identify what roles different entities play. Domain Entities Domain entities are the entities that relate directly to the business of the database. In a database to track customer orders, for instance, domain entities would probably include ones like Customer, Order, =nventory, etc. =n Sharon’s tutor database the domain entities so far include Tutor, Student, Session, and Course. Linking Entities Linking Entities are used to resolve many -to-many relationships into two one -to-many relationships. In Shar on’s database, the TutorCourse and StudentCourse entities serve this purpose. Without these linking entities Relational Database Management Systems would be unable to resolve the relationships between the entities involved and the database would fail. Look up Entities Lookup entities are essentially utility entities. They store lists of data that other tables need to look up such as State names or abbreviations, country names, months of the year, postal codes, or any number of other things. Lookup entities h elp ensure consistency in data entry. If you want to use the two letter Ethnicity PK EthnicityKey EthnicityDescription Hands ON Database 164 abbreviation for a state rather than the full state name, a lookup table can help enforce it. Lookup tables also help protect against typing and other data entry errors. Weak Entities A weak entity is an entity that is dependent on another entity for its meaning. Consider, for instance, a situation where you needed to track and employee and his or her dependents. You can’t just list a certain number of dependents in the employee entity because you cannot know ahead of time how many dependents any one employee may have. It is also not a good idea just to list them separated by commas in a character attribute. It is better to create a separate entity called Dependents. Figure 45: Weak Entity The Dependent entity is weak, because it depends on the Employee for meaning. Another common weak entity is a detail table. Typically an order, purchase or sale is broken into two tables, the main CustomerOrder table and the child OrderDetail table. Employee PK EmployeeKey EmployeeLastName EmployeeFirsName Dependent PK DependentKey PK ,FK 1 EmployeeKey DependentLastName DependantFirstName Hands ON Database 165 Figure 46: Master Detail Relationship A good way to understand this is to look at a receipt. WestLake Grocery Emporium (206 -555 -2020) TerminalID 002 Merchant# 02340606060 Visa ############1234 SALE Date 2/1/2010 ________________________________________ bread 2.15 Milk 1.66 Eggs 1.25 hamburger 4.62 Subtotal 9.68 TAX 0.00 Total due 9.68 The top part of the receipt contains al l the information to identify the general transaction. It contains the order number, the date, the customer card number, possibly the employee code, etc. The middle of the receipt contains the line items of the order, the specific items purchased, the quan tity purchased . The bottom of the receipt contains summary information. (in a database this is achieved through CustomerOrder PK OrderKey OrderDate CustomerKey OrderDetail PK OrderDetailKey FK 1 OrderKey ItemKey OrderDetailQuantity Hands ON Database 166 queries.) The OrderDetail entity is dependent on the CustomerOrder for its meaning and is therefore a weak entity. It is also sometimes referred to as a Master/Detail relationship. Here is a table of relationship types: Table 5: Entity Roles Entity Roles Description Domain Entity describing a core business element of the database Linking Entity used to resolve a many -to-many relationship into two one -to-many relationships Lookup Entity used to store lookup values and help ensure data integrity and consistency Weak An entity that depends on another entity for its meaning Finally Sharon reviews all her entities. As she reviews is look s at each attribute and determine if it should be required or not. If the data in the attribute is critical to the integrity of the data in the database, it should be required. But if the data is not immedia tely know —such as which student might sign up for a session —or if it is not critical or if it is optional, it should not be required. You don’t want to burden the process by forcing the users to enter data they may not have. For instance, you wouldn’t wan t to force a tutor or student to invent an email address if they don’t have one. But, equally, you don’t want the user to leave out necessary data. After her review, she has this logical design for the tutoring database. Hands ON Database 167 Figure 47: Tutoring ERD The required fields are in bold. For the student table, Sharon knew that by law she couldn’t require that a student enter the demographic information. Now Sharon looks over the diagram one more time. She dec ides it might be a good exercise to define what role each entity is playing in her design. First she identifies the domain entities: Tutor Student Course Tutor PK TutorKey TutorLastName TutorFirstName TutorPhone TutorEmail TutorHireDate TutorStatus Course PK CourseKey CourseName CourseDescription TutorCourse PK ,FK 1 CourseKey PK ,FK 2 TutorKey Student PK StudentKey StudentlLastName StudentFirstName StudentPhone StudentEmail StudentGender StudentAge StudentCitizen StudentWorkForceRetraining FK 1 EthnicityKey StudentCourse PK ,FK 1 StudentKey PK ,FK 2 CourseKey Session PK SessionDate PK SessionTime PK ,FK 1 TutorKey PK ,FK 1 CourseKey FK 2 StudentKey StudentLastName SessionStatus SessionMaterialCovered Ethnicity PK EthnicityKey EthnicityDescription Hands ON Database 168 Session Next, she lists her linking entities: StudentCourse TutorCourse She has only one lookup entity which is Ethnicity. So far she has no weak entities. Looking over her list, Sharon realizes there is one domain entity she still hasn’t included. That is the Request entity that allows students to request tutoring in areas where it is not already provided. Her first instinct is to link the Request entity to the Student entity, but then she has second thoughts. Does she re ally want to force a student to register to request tutoring for a course where there isn’t tutoring currently. The student making the request is quite probably not being tutored at the moment. Still she would like to link the table into the rest of the da tabase. As she understands it, the course table will contain all the courses for a quarter . Here then, is her final Entity Relationship Diagram. Things to Think About What is the benefit of reviewing the entities according to the role they play in design? Hands ON Database 169 Figure 48: Final ERD before Review Before taking this diagram to Terry, Sharon decides to have her instructor Bill Collins review it. She emails him requesting an appointment and attaches the diagram so he can go over it before they meet. Within minutes he sends an email back agreeing to me et the next morning. He said he would look over the design and make sure that it was normalized. Tutor PK TutorKey TutorLastName TutorFirstName TutorPhone TutorEmail TutorHireDate TutorStatus Course PK CourseKey CourseName CourseDescription TutorCourse PK ,FK 1 CourseKey PK ,FK 2 TutorKey Student PK StudentKey StudentlLastName StudentFirstName StudentPhone StudentEmail StudentGender StudentAge StudentCitizen StudentWorkForceRetraining FK 1 EthnicityKey StudentCourse PK ,FK 1 StudentKey PK ,FK 2 CourseKey Session PK SessionDate PK SessionTime PK ,FK 1 TutorKey PK ,FK 1 CourseKey FK 2 StudentKey StudentLastName SessionStatus SessionMaterialCovered Ethnicity PK EthnicityKey EthnicityDescription Request PK RequestKey FK 1 CourseKey RequestDate RequestStatus RequestStudentName RequestStudentID RequestStudentEmail RequestNotes Hands ON Database 170 Documentation: Diagrams often communicate more clearly than words. It is important to keep Entity relation diagrams in your database notebook. It is also a goo d idea to keep a history of diagrams. As your design progresses, you will make changes to the diagrams, adding and removing entities and attributes. Rather than just discarding the older diagrams, it can be valuable to keep dated versions of the ERD along with notes defining what changes were made and why. Coming back later, this can help you or a later developer understand the thought process that culminated in the final database design. Things we have done We have worked through the logical design of the database We have created Entities We have added Attributes to Entities We have analyzed and created relationships among our entities We have identified the roles the entities play in our design Vocabulary Match the vocabulary word with its definition. 1. Cardinality 2. Composite keys 3. Crow’s feet notation 4. Domain entities 5. Entity Relation Diagrams 6. Linking entity 7. Logical design Hands ON Database 171 8. Lookup entity 9. Maximum cardinality 10. Minimum cardinality 11. Naming conventions 12. Physical design 13. Surrogate keys 14. Triggers 15. Weak entities a) The entity relation design without regard to what RDBMS or system it will be on b) The design adapted to the RDBMS and system constraints and features c) One common method of depicting Entities and relations in a diagram d) A set of rules or suggestions that promote consiste ncy in the naming of database objects e) Notation for relationships that uses lines and circles to depict cardinality f) An entity which resolves a many -to-many relationship into two one -to-many relationships g) Refers to the number of permitted records in a relate d entity h) An entity that depends on another entity for its meaning i) The highest number permitted, j) The smallest number permitted k) A random or arbitrary key often generated by just incrementing numbers l) An entity that captures a chief element of the business problem m) Executable scripts of SQL code that are triggered by an event such as an Insert, Update or Delete. n) A key that consists of more than one column Hands ON Database 172 o) Are used to store a set of values that can be looked up, such as state abbreviations or zip codes. Things to look up 1. Look up naming other database naming conventions. Is there one that makes the most sense to you? Explain why? 2. Look up Entity Re lation Diagrams. What other ways of diagramming entities and relations did you find? 3. Look for on -line tutorial s on relational database design. Make a list of the five best. Share with the class to make a resource list of tutorials. Practices 1. Create an entity to describe the products in a sandwich shop. These can include sandwiches, of course, but also pastries an d drinks. 2. Which attributes of the products entity should be required? 3. Which attributes would make a good primary key? 4. Here are two entities. (Only the primary keys are included.) What kind of relationship exists between these entities? Explain. 5. Create a diagram that shows how you would resolve the relationship in practice 4. Recipe PK RecipeKey Ingredient PK IngredientKey Hands ON Database 173 6. An instructor has decided that he needs a relational database to store grades in. He has defined the following three entities: Student , Course , and Assig nment . What kind of relationship exists between these entities? 7. Create an Entity Relation Diagram for the instructor’s database. Don’t worry about the attributes, but give each entity a primary key attribute. Remember to watch out for many -to- many relatio nships. 8. A dentist office has three Dentists, two hygienists, five dental assistants and two administrative assistants to maintain the office paper work. They are creating a database to track appointments and to track who works with each patient. So far the database developer has defined these Entities: Employee (which includes all categories of employee incl uding the dentists), Customer, and Appointment. Which entities have many -to-many relationships? 9. Create an ERD that show s the relationships among the en tities in the Dentist office above. Remember several employees (a dentist, an assistant, a hygienist etc. can be involved in a single appointment for a customer.) 10. Look at the diagram for practice 8 . Identify which entities are domain entities, which are li nking entities, which are lookup and which, if any, are weak entities. Scenarios The managers at Wild Wood Apartments are anxious to see some progress on their database. They have answered your questions and now want to see some results. They really want the new database to be in place before the beginning of the new fiscal year in July. It is time to design the database. Hands ON Database 174 Review all the requirements and business rules. Define your entities and attributes and the relations that exist between them. Create a logical model using crow’s feet notation in Visio or hand draw it on graph paper if you prefer. Add all the entities and their attributes. You don’t need to worry abou t data types for now. Identify the key fields for each Entity and the foreign keys. Analyze the diagram. Identify which role (domain, linking, lookup, weak) each entity plays in your database. Have another student or a group review it for the following: o Are all the major comp onents of the Wildwood Apartments business model represented by domain entities o Does each entity contain the appropriate attributes to fully describe it and meet the business rules you have gathered so far o Does every entity have an appropriate primary key defined o Are all many -to-many relationships resolved into one -to-many relationships by linking tables o Are the relationships valid (no cross relationships. The appropriate entity is defined as the one side of a one -to-many relationship , tables have appropria te foreign keys, etc. o Lookup tables are used for attributes that have a set list of values Documentation: Be sure to store your ERDS in your database notebook Hands ON Database 175 Vince is convinced he is losing money on several of his transactions. He is anxious to get the new database in place to help him get control over his business. He has been polite, but keeps checking on your progress. It is time to show some results. Creat e a logical design of Vince’s database. Use the following steps: Review all the requirements and business rules that you have gathered from your interviews and reviewing Vince’s records. Define your entities and attributes and the relations that exist bet ween them. Create a logical model using crow’s feet notation in Visio or hand draw it on graph paper if you prefer. Add all the entities and their attributes. You don’t need to worry about data types for now. Identify the key fields for each Entity and the foreign keys. Analyze the diagram. Identify which role (domain, linking, lookup, weak) each entity plays in your database. Have another student or a group review it for the following: o Are all the major components of the Vince’s business model represe nted by domain entities o Does each entity contain the appropriate attributes to fully describe it and meet the business rules you have gathered so far o Does every entity have an appropriate primary key defined o Are all many -to-many relationships resolved into one -to-many relationships by linking tables Hands ON Database 176 o Are the relationships valid (no cross relationships. The appropriate entity is defined as the one side of a one -to-many relationship; tables have appropriate foreign keys, etc. o Lookup tables are used for attribu tes that have a set list of values Documentation: Be sure to store your ERDS in your database notebook A team from the Software Alliance could show up any day. The IT Services manager is eager to get the tracking database in place. It is time to show so me progress. Create the logical design of the database following these steps: Review all the requirements and business rules. Define your entities and attributes and the relations that exist between them. Create a logical model using crow’s feet notation in Visio or hand draw it on graph paper if you prefer. Add all the entities and their attributes. You don’t need to worry about data types for now. Identify the key fields for each Entity and the foreign keys. Analyze the diagram. Identify which role (domain, linking, lookup, weak) each entity plays in your database. Have another student or a group review it for the following: o Are all the major components of the Software tracking system represented by do main entities Hands ON Database 177 o Does each entity contain the appropriate attributes to fully describe it and meet the business rules you have gathered so far o Does every entity have an appropriate primary key defined o Are all many -to-many relationships resolved into one -to-ma ny relationships by linking tables o Are the relationships valid (no cross relationships. The appropriate entity is defined as the one si de of a one -to-many relationship; , tables have appropriate foreign keys, etc. o Lookup tables are used for attributes that have a set list of values Documentation: Be sure to store your ERDS in your database notebook It is imperative that the database be ready before the actual clinical trials begin. The staff at Westlake are anxious to see some results. It is time you show them the logical design of their database. Follow these steps: Review all the requirements and business rules. Define your entities and attributes and the relations that exist between them. Create a logical model using crow’s feet notation in Visio or h and draw it on graph paper if you prefer. Add all the entities and their attributes. You don’t need to worry about data types for now. Identify the key fields for each Entity and the foreign keys. Analyze the diagram. Identify which role (domain, linki ng, lookup, weak) each entity plays in your database. Hands ON Database 178 Have another student or a group review it for the following: o Are all the major components of the clinical trial represented by domain entities o Does each entity contain the appropriate attributes to fully describe it and meet the business rules you have gathered so far o Does every entity have an appropriate primary key defined o Are all many -to-many relationships resolved into one -to-many relationships by linking tables o Are the relationships valid (no cr oss relationships. The appropriate entity is defined as the one side of a one -to-many relationship; tables have appropriate foreign keys, etc. o Lookup tables are used for attributes that have a set list of values Documentation: Be sure to store your ERDS in your database notebook Suggestion for the Scenarios These scenario exercises are probably the most difficult in the book. The first suggestion is to not panic.
 Creating ERDs is an iterative process. No one expects you to have a perfect diagram on the firs t attempt. The trick is to add entities one at a time. Don’t try to imagine the whole diagram all at once. Look at each entity separately. Does it have the appropriate attributes? Is the primary key defined? After the main entities are on the diagram, lo ok at the relationships two entities at a time. What kind of relationship do they have? Do you need a linking table? etc. Remember also, that some entities have no direct relationship between them. Don’t fall into the trap of trying to relating every entit y to every other entity. Discussion helps. Others can see issues and approaches that you might have missed. It is always good to have another pair of eyes looking over your work. Hands ON Database 179 Chapter Five: Normalization and Design Review Sharon takes her Entity Relation Diagram to her Database Professor, Bill Collins. Together they review it for it completeness and conformity to the first three normal forms. Th en Sharon takes the design to Terry for a final discussion and review before beginning the physical design of the database. Outcomes By the end of this chapter you will be able to Evaluate an entity against the first three normal forms Remove all repeating lists or arrays (1 st normal form) Remove functional dependencies (2 nd normal form) Remove all transitive dependencies (3 rd normal form) Understand the importance of design review The Design Review Sharon knocks on Professor Collin’s door early in the morning. :e greets her and offer s a chair. He has the diagram printed out with a few hand written notes and arrows. He shows her the diagram and begins to explain his notes. “This is a pretty good diagram. You have all the basic elements in place.” “= owe it all to what I learned in your class.” Hands ON Database 180 “Thanks. “ :e looks at the diagram. “= think we should begin by looking at the entities and making sure they are all properly normalized. Then we should check to make sure all the relationships are correct, and finally we can discuss whether the d iagram completely captures everything needed to meet the business requirements. “Sound’s good. Let’s start.” “Ok, let’s start with Normalization. First we will see if it conforms to the first Normal Form. ” Things you need to know Normalization Normalization is the process of removing anomalies and redundancies from database Design. There are three specific kinds of anomalies that can occur in database design: Insertion anomalies Update anomalies Deletion anomalies Insertion Anomalies An =nsertion anomaly occurs when you can’t enter certain information because you are missing other inf ormation. Consider, for example a case, where a company has a business rule that every employee must be assigned to a project. They have set up the employee entity in their database to look like this: Normalization --the process of removing anomalies and redundancies from Database Design Insertion Anomaly — when you can’t enter data because other data is missing Hands ON Database 181 Figure 49: Employee Entity The data in the table would look like this EmployeeKey EmployeeLastName EmployeeFirstName ProjectName ProjectDescription 4123 Brown Richard DB245 New Employee Database 4124 Sanderson Lisa DB134 Tune the point of sale database 4215 Lewis Wallace DB245 New Employee Database Figure 50: Employee Table The project is required. A new employee, who hasn’t been assigned a project, cannot be entered into the table. One strategy is to create a dummy project for new employees. But this is a bad idea. It puts meaningless data in your database and is a risk to data integrity. Update Anomalies Update anomalies occur when the same data is stored in more than one place. =f the data needs to be changed or “updated,” the user has t o find and change every instance of that data and change it to make sure the data is consistent. It is all too easy to miss an instance or to make a mistake on one of the records so that it reads differently from the others. In the example above, for ins tance, employees Brown and Lewis are working on the Things to Think About: How do you think it would effect the users of a database to have these anomalies appear after the database had been put into production? Employee PK EmployeeKey EmployeeLastName EmployeeFirstName ProjectName ProjectDescription Hands ON Database 182 same project. Suppose the project name was changed by management. When the database is updated all the project names were changed except for Lewis. Now if someone queries the database it would look like L ewis and Brown are working on different projects. This may seem unlikely with the three records shown above, but imagine a data table with hundreds or thousands of records. Whenever there is redundancy —the same data repeated in several places — update anomalies are likely to occur. Deletion Anomalies The table above also illustrates how deletion anomalies occur. A deletion anomaly happens when deleting one piece of data accidentally deletes all information about a different piece of data. For instance, in the Employee table above. If Lisa Sanderson were to quit and be del eted from the table, we would also lose all information about the project DB134. Even if she were the only employee assigned to the project, information about the project should be available after she leaves. Normal Forms Over the years, database experts have developed a series of “Normal Forms.” Each form was designed to eliminate one or more of these anomalies. The Normal forms are: First Normal Form Seco nd Normal Form Third Normal Form Boyce Codd Normal Form Fourth Normal Form Update Anomaly — where the same information must be updated in several different places Deletion Anomaly — Where deleting on piece of data inadvertently causes other data to be lost Normal Forms — Each normal form is a set of rules designed to reduce or eliminate various anomalies Hands ON Database 183 Fifth Normal Form Domain Key Normal form The first three Normal Forms are the most critical for developing a working database. The other normal forms add refinements that are valuab le but not as critical. The concepts of Normalization and the process of “normalizing” can be quite difficult to master initially.
 To help we will look at two different examples. A Note on Terminology =n the following Examples the term “Entity” is used to describe the logical structure of as seen in design. The term “Table” is used for physical manifestation of the entity which contains actual rows of data. Example 1: The first example looks at a simple database to track Albums, artists and songs. Here is the first incarnation of the table. Album Tracks Artist ArtistCountry Abby Road Here comes the sun, Octopus Garden, Something, etc Beatles UK Blond on Blond Rainy Day Woman, Sad eyed lady of the lowlands, Stuck in Memphis with the mobile blues again Bob Dylan US Figure 51: Album table, Not Normalized This table could potentially fall prey to all three anomalies. If the ArtistCountry were required, it would be impossible to insert a new album if you did not know the country of the artist. If you deleted an album you could accidently remove all data about a given artist. Updating tracks could be difficult and result in errors because of the way they are listed in the cell. Hands ON Database 184 Example 2: Con verting a spreadsheet into a relational database is a common task for database developers. The task is not as straight forward as it might seem. Although you can often import data from a spreadsheet directly into a database management system, spreadsheets are almost never well designed for relational databases. Below is a spreadsheet that stores contact information for a university. Some sample rows are included. . LastName/Dept FirstName Phone Building code Building Building Address Able Susan 206.555.2356 BE Broadway Edison 1700 Broadway Admissions 206.555.1000 BE Broadway Edison 1700 Broadway Anderson Elliot 206.555.1029 SA South Annex 1650 Broadway Anderson Jolene 206.555.9001 SA South Annex 1650 Broadway Bradley Lisa 206.555.2323 BE Broadway Edison 1700 Broadway Brown Martin 206.555.1200 SA South Annex 1650 Broadway Information Technology 206.555.1200 SA South Annex 1650 Broadway Figure 52: Contact Spreadsheet Office Dept Type Status Title Email 314 HUM Instruction FT Professor 124 ADM 212 IT Instruction PT Professor 113 IT Instruction PT Professor 114 MAT Staff FT Program Assistant, Lab Assistant 201 IT Exempt Dean IT 200 Figure 53: Contact Spreadsheet Cont. The contact list works fairly well as a spreadsheet, but presents several difficulties for a database developer. For one thing, there is a great deal of redundancy. Among others, the Building and Building Hands ON Database 185 Address repeat numerous times. While this may seem innocuous enough it does p resent open the possibility of update anomalies. Consider what would need to be done if th e IT Department moved to the Broadway Edison building. The building code, building name and address would have to be changed for every employee that works in the IT Department. If any row remains unchanged the information for that employee will be incorre ct. When a value is repeated many times this can happen quite easily. The spreadsheet is also open to Deletion Anomalies. Consider what would happen if Martin Brown were to quit and be removed from the list. The position of Dean would also be lost. While it is extremely unlikely that all the Deans would quit at once, it still points out a problem. Removing one thing, a person, requires that you also rem ove another thing a Department. Insertion Anomalies could also occur. If office and phone were required, it would be impossible to insert a new employee until they had been assigned an office and a phone. First Normal Form The first normal form involves getting rid of repeating groups or arrays . Eac h attribute should contain only a single value of a single type. This means a couple of things. For one, all the values under an attribute should be about the same thing. An attribute called “Email” for instance should contain emails only, no phone or page r numbers. A second meaning is that each value stored under an attribute should be a single value, not an array or list of values. It would be wrong, for example, to store two or three emails for the same person separated by commas. An Entity is in First Normal Form if Every attribute represents only one value There are no repeating groups or arrays First Normal Form — removes all repeating groups or arrays Hands ON Database 186 Each row is unique Example 1: This Album table does not meet the criteria for First Normal Form. The main problem is in the tracks column. The column Tracks co ntains a list of songs rather than a single value. This would make it very difficult to locate information about any single song. One solution that often occurs to beginning database developers is to enumerate a list of columns such as Track1, Track2, Tra ck3, etc. to some arbitrary number of tracks. This also violates FN1 by creating a repeating group. Say, for argument’s sake, you made 13 track columns. What happens to an Album with fourteen tracks? What if an album only has one or two tracks? Also consid er what you would need to do to find any individual track. You would need to query thirteen separate columns. The following table is in first normal form: Figure 54: Album Table in First Normal Form Album Title Track Artist ArtistCountry Abby Road Here comes the sun Beatles UK Abby Road Octopus’s Garden Beatles UK Abby Road Something Beatles UK Blond on Blond Rainy Day Woman Bob Dylan US Blond on Blond Sad Eyed Lady of the lowlands Bob Dylan US Blond on Blond Stuck in Mobile with the Memphis blues again Bob Dylan US It is obvious from looking at the table above that First Normal Form is not sufficient. Every column contains a single value and there are no arrays or repeating groups, but there is a great deal of redundancy. Hands ON Database 187 Example 2: In our spreadsheet example the f irst attribute LastName/Dept stores two different types of values, last names and Department names. The attribute Title also has an issue. Lisa Brown has two titles, “Program Assistant” and “Lab Assistant.” =n First Normal Form each row of an attribute mu st contain only a single value. It may not be obvious, at first why these things are a problem. Think about it from the point of view of someone querying the database. =f they want to find a Department’s phone they have to search through all the faculty and staff names to find it. They could apply various filters, such as searching for values that have no status or position, but that is not guaranteed to return just what they want. A database use r expects to be able to just ask for the Department names an d find them. The Title column is even more problematic for the database searcher. Suppose, you want to find all the employees who have a title “Lab Assistant.” When the attribute contains a list of values you can’t simply search for that title.
 You would have to use some kind of pattern search or string function to extract the title from the list. There is also no way to ensure consistency or data integrity when you have a list of values for an attribute. To get the data to conform to First Normal Form, t he first thing to do is to separate LastName and Dept into two attributes. Since there is already a Dept attribute, call the new attribute, DeptName . Here is the first half of the spreadsheet with the correction: LastName FirstName DeptName Phone Building code Building Able Susan 206.555.2356 BE Broadway Edison Admissions Admissions 206.555.1000 BE Broadway Edison Anderson Elliot 206.555.1029 SA South Annex Anderson Jolene 206.555.9001 SA South Annex Bradley Lisa 206.555.2323 BE Broadway Edison Hands ON Database 188 Brown Martin 206.555.1200 SA South Annex Information Technology 206.555.1200 SA South Annex Figure 55: Contact Table wiht Dept and Name seperarted The next problem is more difficult. Title can have multiple values for a single employee. One temptation is to add columns such as Title1 , Title2 , Title3 , but this solution generates more problems than it solves. For the vast majority of employees who only have one title, Title2 and Title3 would be always be empty. Also, what if some enterprising employee were working four positions and had four titles. There would be no room for the fourth. For someone querying the database, this solution opens up even worse problems. If you were searching for a ll the employees who held a particular job title you would have to query three different attributes. The only way to solve this problem is to break the entity into two or more separate entities. Job Title will be a separate entity. We will also need a link ing entity, since there is a many -to-many relationship between employees and job titles. One last issue remains. As you learned in the last chapter on database design, each entity should have a primary key, an attribute that uniquely identifies each row s tored in the entity. In the Tutor database and most examples the book has used natural keys, that is keys that arise from some combination of the natural attributes of an entity. But in this example, just to show an alternative approach, we will use surrog ate keys. Each row will be assigned a arbitrary number in sequence. Most Relational Database Management Systems have a utility to provide such keys. =n SQL Server it is “=dentity,” in Access it is called an “autonumber.” The overall Contact Entity will hav e the key “ContactKey.” The new Title entity will have “TitleKey” for a primay key and the linking entity will have a composite key consisting of “ContactKey” and “TitleKey” When we are done our data will look like this: Hands ON Database 189 ContactKey LastName FirstName DeptN ame Phone Building code 1 Able Susan 206.555.2356 BE 2 Admissions Admissions 206.555.1000 BE 3 Anderson Elliot 206.555.1029 SA 4 Anderson Jolene 206.555.9001 SA 5 Bradley Lisa 206.555.2323 BE 6 Brown Martin 206.555.1200 SA 7 Information Technology 206.555.1200 SA Figure 56: Contact table, First Normal Form Building Building Address Office Dept Type Status Email Broadway Edison 1700 Broadway 314 HUM Instruction FT Broadway Edison 1700 Broadway 124 ADM South Annex 1650 Broadway 212 IT Instruction PT South Annex 1650 Broadway 113 IT Instruction PT Broadway Edison 1700 Broadway 114 MAT Staff FT South Annex 1650 Broadway 201 IT Exempt South Annex 1650 Broadway 200 Figure 57: Contact table cont TitleKey TitleName 1 Professor 2 Program Assistant 3 Dean 4 Lab Assistant Figure 58: Title Table ContactKey TitleKey 1 1 3 1 4 1 5 2 5 4 6 3 Figure 59:Contact Title Table Below is an ERD of our efforts so far: Hands ON Database 190 Figure 60: Contact ERD First Normal Form Professor Collins lays out the Tutor diagram so that both he and Sharon can see it clearly. Contact PK ContactKey LastName Firstname DeptName Phone BuildingCode BuildingName BuildingAddress Office Dept Type Status Email Title PK TitleKey TitleName ContactTitle PK ,FK 1 ContactKey PK ,FK 2 TitleKey Hands ON Database 191 Figure 61: Tutor ERD Version 1 “As you recall,” he begins, “To conform to First Nor mal Form you need to eliminate all repeating groups or arrays and all multi -valued dependencies. ” Together they go through each table. Professor Collins pauses at the Request table. “All the tables look good, but = do have a question about the attribute ‘Request Notes.’ Will there be instances with more than one entry for notes? =f so it would be better to make an new entity called RequestNotes , or something like that. That way each request can have Tutor PK TutorKey TutorLastName TutorFirstName TutorPhone TutorEmail TutorHireDate TutorStatus Course PK CourseKey CourseName CourseDescription TutorCourse PK ,FK 1 CourseKey PK ,FK 2 TutorKey Student PK StudentKey StudentlLastName StudentFirstName StudentPhone StudentEmail StudentGender StudentAge StudentCitizen StudentWorkForceRetraining FK 1 EthnicityKey StudentCourse PK ,FK 1 StudentKey PK ,FK 2 CourseKey Session PK SessionDate PK SessionTime PK ,FK 1 TutorKey PK ,FK 1 CourseKey FK 2 StudentKey StudentLastName SessionStatus SessionMaterialCovered Ethnicity PK EthnicityKey EthnicityDescription Request PK RequestKey FK 1 CourseKey RequestDate RequestStatus RequestStudentName RequestStudentID RequestStudentEmail RequestNotes Hands ON Database 192 several notes if necessary, and you aren’t wasting disk space by reserving note space for requests that don’t have any notes. The primary key could be the date and time the note was entered and it would be tied to the Request table by the RequestKey repeated as a Foreign Key.” Sharon nods. “= hadn’t though t abo ut that. I suppose that there could be several notes as the status of the request changes. I will ask Terry about it to be sure. But the idea of separating it just to save disk space makes sense too. =’ll change it.” “Ok, let’s look to see how well your di agram conforms to Second Normal Form. Things You Should Know Second normal form remove s what are called “Functional Dependencies.” One way to think of functional dependencies is as separate groups or themes within an entity. The members of the group are dependent on each other. If one member of the group repeats than s o will the others in t he group. An entity should only be about one thing. All the members should be dependent on the key not on each other. Example 1: In the Album table there are really at least two large subjects. One is the Album itself. The other is the track. Album Title Track Artist ArtistCountry Abby Road Here comes the sun Beatles UK Abby Road Octopus’s Garden BeatleV UK Abby RoaT Something BeatleV UK Blond on Blond Rainy Day Woman Bob Dylan US Blond on Blond Sad Eyed Lady of the lowlands Bob Dylan US Blond on BlonT Stuck in Mobile with the Bob Dylan US Functional Dependencies — groups of related attributes that form sub themes within an entity Second Normal Form — removes functional dependencies by creating new entities Hands ON Database 193 Memphis blues again Figure 62: Album Table First Normal Form The Artist information depends on the Track. (Think about an album with tracks by multiple artists.) To conform to the Second Normal Form, the two functional dependencies —big themes —must be broken into separate Entities. Figure 63: Album Entity Second Normal Form To relate the Album entity to the Track E ntity, it is necessary to create a primary key for the A lbum entity that can be used to create a key —foreign key relationship with the Track entity. It is also a good idea to give the Track entity a Primary key. Here is what the tables look like now: Figur e 64: Album Table Second Normal Form AlbumKey AlbumTitle ABRD Abby Road BLBL Blond On Blond Figure 65: Track Table Second Normal Form TrackKey TrackTitle AlbumKey Artist ArtistCountry HCTS Here Comes the Sun ABRD Beatles UK SMTH Something ABRD Beatles UK OPGD Octopus’s Garden ABRD Beatles UK RDWM Rainy Day Woman BLBL Bob Dylan Us SELL Sad Eyed Lady of the Lowlands BLBL Bob Dylan US SMMB Stuck in Memphis with the Mobile Blues BLBL Bob Dylan US Album PK AlbumKey AlbumTitle Track PK TrackKey TrackTitle Artist ArtistCountry FK 1 AlbumKey Hands ON Database 194 Example 2: In the Contact spreadsheet example, there are really a two distinct types of contacts: Employees and Departments. They have separate attributes within the entity. Employee has LastName and FirstName attributes , for instance, which are always blank for Department. Separate themes should be given their own entities. Below is the sample data reflecting the new entities. Creating the Employee entity required some additional changes. The ContactTitle entity is changed to EmployeeTitle and ContactK ey is changed to EmployeeKey. The numbers have been changed to reflect the new relationship. Additionally information not in the original table has been added to fill in the Department Entity EmployeeKey LastName FirstName Phone Building code Building 1 Able Susan 206.555.2356 BE Broadway Edison 2 Anderson Elliot 206.555.1029 SA South Annex 3 Anderson Jolene 206.555.9001 SA South Annex 4 Bradley Lisa 206.555.2323 BE Broadway Edison 5 Brown Martin 206.555.1200 SA South Annex Figure 66: Employee Table Building Address Office DeptKey Type Status Email 1700 Broadway 314 1 Instruction FT 1650 Broadway 212 2 Instruction PT 1650 Broadway 113 2 Instruction PT 1700 Broadway 114 3 Staff FT 1650 Broadway 201 2 Exempt Figure 67: Employee Table Cont DeptKey DeptAbrv DeptName DeptPhone Building code 1 Hum Humanities 206.555.1300 BE 2 IT Information Technology 206.555.1200 SA Hands ON Database 195 3 MAT Math 206.555.1400 BE 4 ADM Admissions 206.555.1000 BE Building Building Address Office Broadway Edison 1700 Broadway 301 South Annex 1650 Broadway 200 Broadway Edison 1700 Broadway 245 Broadway Edison 1700 Broadway 124 Figure 68: Department table TitleKey TitleName 1 Professor 2 Program Assistant 3 Dean 4 Lab Assistant Figure 69:Title table EmployeeKey TitleKey 1 1 2 1 3 1 4 2 4 4 5 3 Figure 70: Employee Title Table There is still on e major functional dependency in the entities remaining. Both the Employee and the Department entities contain a group related to building. “Building Name,” and “Building Address” both depend on “Building Code” and repeat whenever the attribute “Building Co de ” is present. Building is another separate theme and should have its own entity. The new building entity looks like this: BuildingKey BuildingCode BuildingName BuildingAddress 1 BE Broadway Edison 1700 Broadway 1 SA South Annex 1650 Broadway Hands ON Database 196 Figure 71: Building Table The “Building Code,” “Building,” and “Building Address” attributes in Employee and Department are replaced by the “BuildingKey” attribute. So they now look like this: EmployeeKey LastName FirstName Phone Building code 1 Able Susan 206.555.2356 1 2 Anderson Elliot 206.555.1029 2 3 Anderson Jolene 206.555.9001 2 4 Bradley Lisa 206.555.2323 1 5 Brown Martin 206.555.1200 2 Figure 72: Employee Table Second Normal Form Office DeptKey Type Status Email 314 1 Instruction FT 212 2 Instruction PT 113 2 Instruction PT 114 3 Staff FT 201 2 Exempt Figure 73: Employee Cont. DeptKey DeptAbrv DeptName DeptPhone Building code Office 1 Hum Humanities 206.555.1300 1 301 2 IT Information Technology 206.555.1200 2 200 3 MAT Math 206.555.1400 1 245 4 ADM Admissions 206.555.1000 1 124 Figure 74: Department Table Hands ON Database 197 The ERD of the data in Second Normal Form looks like this: Figure 75: Contact ERD Second Normal Form Things to Watch out for An un -normalized or poorly normalized database can lead to numerous problems including difficulties inserting or updating data, difficulties deleting data, problems with data integrity and the inability to retrieve the data you need. Professor Collins looked through each of the entities for functional dependencies. He stop s again at the Request entity. Employee PK EmployeeKey LastName Firstname DeptName Phone Office Type Status Email FK 1 DepttKey FK 2 BuildingKey Title PK TitleKey TitleName EmployeeTitle PK ,FK 1 EmployeetKey PK ,FK 2 TitleKey Department PK DepttKey DeptAbv DeptName Room Phone FK 1 BuildingKey Building PK BuildingKey BuildingCode BuildingName BuildingAddress Hands ON Database 198 Figure 76: Request Entity “We already talked about the RequestNotes , but look at the entity again,“ he says . “Can you see two different things going on?” Sharon looks at it for some time before she finally sees it. “Request is one theme, and student is another.” “Yes, there is a functional dependency there. RequestStudentName , RequestStudentEmail , depend o n RequestStudentID , rather than on the RequestKey .” “= see that, but = was thinking was that a student shouldn’t have to register as a tutoring student to make a request for additional tutoring. =n particular they shouldn’t have to enter all the demographi c information. In fact if they do register just to make a request, it may make it more difficult for Terry to develop her demographic reports.” “= understand, but if you leave the entity the way it is, it could cause problems. The student information would be repeated with every request the student makes. That could lead to update and other anomalies. “ Bill thinks about it for awhile. “= can think of a couple of solutions. The best solution would be to have them register in the student table. As I understa nd it, any student that wants tutoring must register. Request PK RequestKey FK 1 CourseKey RequestDate RequestStatus RequestStudentName RequestStudentID RequestStudentEmail RequestNotes Hands ON Database 199 Being registered, in and of itself, does not mean they are actually signing up for tutoring sessions. To do the demographics Terry would have to compare the student information to the student Keys in th e Session table anyway. The other option is to create a Requester table that contains the student information for those requesting tutoring. = don’t think this option is as strong because it creates a lot of potential redundancy.” “Which one do you think = should go with?” “= think you should talk it over with Terry. Use the Student Entity if possible.” “Thanks.” “OK, Let’s see how it looks for Third Normal Form.” Things You Should Know Third Normal Form For an Entity to be in Third Normal Form it has to first be in Second Normal Form. Third Normal form is about removing “Transitive Dependencies.” A t ransitive dependency describes an attribute that depends on another attribute — not the primary key —for its meaning. The idea is that every attribute should directly describe the entity itself. If you have a customer entity, every attribute should describe t he customer. There shouldn’t be any at tributes that describe another attribute. While transitive dependencies may seem trivial, they do add to redundancy and therefore open the possibilities for update and other anomalies. Transient Dependencies — Where one attribute depends on another attribute for its meaning and not on the key Third Normal Form — removing transient dependencies Hands ON Database 200 Example 1: Take another look at the Track table TrackKey TrackTitle AlbumKey Artist ArtistCountry HCTS Here Comes the Sun ABRD Beatles UK SMTH Something ABRD Beatles UK OPGD Octopus’s Garden ABRD Beatles UK RDWM Rainy Day Woman BLBL Bob Dylan Us SELL Sad Eyed Lady of the Lowlands BLBL Bob Dylan US SMMB Stuck in Memphis with the Mobile Blues BLBL Bob Dylan US Figure 77: Track Table There is a transitive dependency in the table. ArtistCountry , doesn’t describe the track; it describes the Artist. The solution, as usual, is to break out a separate table. Artist should be its own entity. AlbumKey AlbumTitle ABRD Abby Road BLBL Blond On Blond Figure 78: Album Table Figure 79: Artist Table . ArtistKey ArtistName ArtistCountry BTLS Beatles UK BDLN Bob Dylan US Figure 80: Track Table Third Normal Form TrackKey TrackTitle AlbumKey Artist Key HCTS Here Comes the Sun ABRD BTLS SMTH Something ABRD BTLS OPGD Octopus’s Garden ABRD BTLS RDWM Rainy Day Woman BLBL BDLN SELL Sad Eyed Lady of the Lowlands BLBL BDLN SMMB Stuck in Memphis with the Mobile Blues BLBL BDLN Here is an Entity Relation Diagram for the three tables: Hands ON Database 201 Figure 81: Album ERD Third Normal Form Example 2: A careful review of the entities developed from the address spreadsheet, can review two related transitive dependencies. In the Employee Entity the office number depends on the BuildingKey. That is, a particular office number only has meaning in the context of a particular building. The same issue exists in the Department entity. The room number for the Department depends on the Building. One solution is to create a new entity called BuildingRoom that resolves the building and room relationship. Because we are using surrogate keys will give the new entity a BuildingRoomKey a a primary key. Now the tables look like this: EmployeeKey LastName FirstName Phone BuildingRoomKey 1 Able Susan 206.555.2356 5 2 Anderson Elliot 206.555.1029 9 3 Anderson Jolene 206.555.9001 6 4 Bradley Lisa 206.555.2323 1 5 Brown Martin 206.555.1200 8 Figure 82: Employee Table Album PK AlbumKey AlbumTitle Artist PK ArtistKey ArtistName ArtistCountry Track PK TrackKey TrackTitle FK 1 AlbumKey FK 2 ArtistKey Hands ON Database 202 DeptKey Type Status Email 1 Instruction FT 2 Instruction PT 2 Instruction PT 3 Staff FT 2 Exempt Figure 83: Employee Table Cont. DeptKey DeptAbrv DeptName DeptPhone Building code 1 Hum Humanities 206.555.1300 4 2 IT Information Technology 206.555.1200 7 3 MAT Math 206.555.1400 3 4 ADM Admissions 206.555.1000 2 Figure 84: Department Table TitleKey TitleName 1 Professor 2 Program Assistant 3 Dean 4 Lab Assistant Figure 85: Title Table EmployeeKey TitleKey 1 1 2 1 3 1 4 2 4 4 5 3 Figure 86: Employee Title table BuildingKey BuildingCode BuildingName BuildingAddress 1 BE Broadway Edison 1700 Broadway 1 SA South Annex 1650 Broadway Figure 87: Building Table Hands ON Database 203 buildingRoomKEY BuildingKey Room 1 1 114 2 1 124 3 1 245 4 1 301 5 1 314 6 2 113 7 2 200 8 2 201 9 2 212 Figure 88: Building Room Table The new Entity Diagram looks like this: Figure 89: Contact ERD Third Normal Form Employee PK EmployeeKey LastName Firstname DeptName Phone Type Status Email FK 1 DepttKey FK 2 BuildingRoomKey Title PK TitleKey TitleName EmployeeTitle PK ,FK 1 EmployeetKey PK ,FK 2 TitleKey Department PK DepttKey DeptAbv DeptName Phone FK 1 BuildingRoomKey Building PK BuildingKey BuildingCode BuildingName BuildingAddress BuildingRoom PK BuildingRoomKey FK 1 BuildingKey RoomNumber Hands ON Database 204 Once again Professor Collins reviewed the entities, this time checking to make sure they conform to Third Normal Form . “= only see one issue, ” he says, and points to the Session Entity: Figure 90: Session Entity “StudentLastName modifies the StudentKey and not the SessionKey. I know it seems natural to want the student last name in the Session, but it is unnecessary and redundant. The session is related to the Student table by means of the “StudentKey,” and you can always retrieve any student information you need by means of a query.” Things to Watch Out For It is easy to add an attr ibute to an entity because you feel intuitively that you would want to see it there when looking at the data. But adding the column creates unnecessary redundancy and opens the possibility of anomalies. One way to think about it is that Normalization is a bout designing tables so that they work best on the computer. They are not designed to be necessarily readable by human users.
 Queries and views are used to bring the data back in a form that is easy to understand and use. Queries will be covered in Chapte r Seven. Sharon says, “= knew that. = don’t know what possessed me to put that in there.” Session PK ,FK 1 TutorKey PK ,FK 1 CourseKey PK SessionDate PK SessionStartTime FK 2 StudentKey StudentLastName SessionStatus Hands ON Database 205 Bill Collins smiles. “Like = said it is a natural reaction. You want the student name to be a part of the tutoring session.
 But = notice you didn’t put in the tutor’s name. That shows you understood the principle, you just slipped up. That’s what reviews are for.” :e turns to another of his notes. “Looking the diagram over a third time, I noticed another potential problem. Here you made a linking table between Student and Courses with a composite key consisting of StudentKey and CourseKey. That makes perfect sense, but it does have a problem. That means a student can only take a particular course once, ever, or, at least, they can only get tutored for that course once. If a student takes a course a second time it would violate the primary key constraint. = don’t think that is a policy of the tutoring center. I think you can get tutoring for any course you are enrolled in, even if it is your second or third try.” Sharon studies the diagram for a minute. “:ow would = fix that?” “= think all it would take is to add anot her column to the composite key, ideally one that specifies quarter and year. = would suggest something like this. “ Figure 91: StudentCourse Entity Sharon no ds in agreement. “Anything else? ” Things to think about: You should always have someone else review your Entity Relation Diagrams before you use them to start developing the database itself. Who do you think should review the diagram? What should they look for? What are the dangers of going ahead without reviewing the diagram? StudentCourse PK ,FK 1 StudentKey PK ,FK 2 CourseKey PK StudentCourseQuarter Hands ON Database 206 “No, = think with those changes it should be fine. Remember to review the diagram with Terry to make sure it covers everythin g she needs. Don’t expect her to understand the diagram. The main thing you need to do is look at all the attributes and make sure that everything she needs is included.” “= will do that, and thank you for your help.” “You are most welcome. Make sure you r eview this with Terry before you start actually building the database. She probably won’t understand normalization and relational modeling, but she will be the best source to determine if you have captured everything that needs to be captured.” “= will do that.” After Sharon leaves Bill Collins’ office she goes to the cafeteria and gets a cup of coffee. She opens her laptop and adjusts her Entity Relation diagram to incorporate all Bill’s suggestions . This is the version she will take to Terry. Hands ON Database 207 Figure 92: Tutor Entity Normalized Tutor PK TutorKey TutorLastName TutorFirstName TutorPhone TutorEmail TutorHireDate TutorStatus Course PK CourseKey CourseName CourseDescription TutorCourse PK ,FK 1 CourseKey PK ,FK 2 TutorKey Student PK StudentKey StudentlLastName StudentFirstName StudentPhone StudentEmail StudentGender StudentAge StudentCitizen StudentWorkForceRetraining FK 1 EthnicityKey StudentCourse PK ,FK 1 StudentKey PK ,FK 2 CourseKey PK StudentCourseQuarter Session PK SessionDate PK SessionTime PK ,FK 1 TutorKey PK ,FK 1 CourseKey FK 2 StudentKey SessionStatus SessionMaterialCovered Ethnicity PK EthnicityKey EthnicityDescription Request PK RequestKey FK 1 CourseKey RequestDate RequestStatus FK 2 StudentKey RequestNote PK RequestNoteKey RequestNoteText FK 1 RequestKey Hands ON Database 208 Final Content Review Terry agrees to see her the next day. After she has sat down she presents Terry with a printout of the diagram. “= have reviewed the design with Professor Collins, “she says, what I need to do with you is figure out if I have captured all the information you need to capture.” “All right that sounds good. Where do we start? ” “= think the best way might be to look at each major entity and go through the attributes. Let’s start with the tutor entity up here. I have the tutor first and last name, a phone number and an email address and the date t hey were hired. “ Terry asks “What do you mean by ‘ TutorStatus ?’” “= was thinking that would r ecord whether a tutor is active or not. You don’t necessary want to delete tutors and all the information about what they tutored when they leave. In fact I pretty sure you want to keep that information so you can compare current data to past data. So I th ough this field would make it simple to determine which tutors were currently tutoring vs. which ones were no longer tutoring. It is possible that you could get the same information by querying the Session tables. =f a tutor doesn’t have any current or fut ure dates listed they would be inactive?” “That wouldn’t always be true. A tutor could be active but not have scheduled anything for the next two weeks. I think the status field is better. What is the TutorKey ?” Sharon smiles, “= am not entirely sure. A st udent has a Student ID and that can be the StudentKey . Most tutors are students but not all of them. Do you create an identifying number?” Things to Think About Do you think it is easier to modify a database in design mode or after the database has been actually built? Why do you think that way? Hands ON Database 209 “Yes. We give all tutors an employment =D. =f they are a student it is the same as their Student ID, if not we give t hem one that looks just like a Student =D.” “Good. That makes that easy.” They review each of the remaining entities. Terry has questions for each, but after the full review she is satisfied that it captures all the information that she will need. Sharon t hanks her. “Now = am ready to actually build the database. We will need to get together again to decide what we want to build it in .” Terry looks down at her calendar . “:ow soon do you want to meet? ” “:ow about Monday? = think = know what we should use, b ut = would like to do a little research.” “OK, how does 9:00 AM work ?” “That should be fine.” Documentation It is useful to keep multiple versions of the entity diagram, noting changes made to conform to normal forms. Again, these can be useful to later developers who need to make changes to your original design. One change that is often made on high volume tra nsaction databases is to apply a process called “denormalization.” =n denormalization, some entities that were separated in the normalization process are rejoined. This is done for processing and query speed. It is not a process that should be done lightly . Every act of denormalization re -opens up the possibility of the various anomalies. Denormalization — Joining tables that were separated in the normalization process to improve performance Hands ON Database 210 But sometimes the sheer size and volume of transactions on a database makes it necessary to denormaliize if the users are not to experience delays. A database should alway s be fully normalized first, and denormalized only as necessary for performance. Both the fully normalized design and the changes made for denormalization should be fully documented. Things We Have Done Looked at three types of database anomalies: Insert, update and delete Introduced Normal Forms Reviewed database designs for First Normal Form Reviewed database designs for Second Normal Form Reviewed database designs for Third Normal Form Reviewed database designs for completeness Vocabulary 1. Normal Forms 2. Update Anomalies 3. Deletion Anomalies 4. First Normal Form 5. Denormalization 6. Insert ion Anomalies 7. Second Normal Form 8. Transient Dependencies 9. Functional Dependencies Hands ON Database 211 10. Third Normal Form a) Where deleting some data inadvertently also removes other data b) Removes transient dependencies c) Where the same data must be updated in several places creating the possibility of mismatched or inaccurate data d) Attributes that are related to each other rather than the key. They form sub themes within the entity e) Rules for removing anomalies and redundancies f) An attribute that depends on another attribute, not the key, for its meaning g) Removes functional dependencies h) The inability to insert data because other unknown data is required i) Removes repeating groups and arrays j) The process of rejoining t ables that were separated during the normalization process to improve performance Things to Look Up 1. Look up database anomalies. See if you can find a good example explaining each kind of anomaly. 2. Look up a definition of Functional Dependency. Can you find a good example? 3. Look up a definition of Transitive Dependency. Can you find a good example? 4. Look up one of the Normal forms we did not cover. See if you can explain it to someone in the class. Hands ON Database 212 5. Look up “de -normalization” and why anyone would want to do it. Practices Martin wants to make a database to track his extensive DVD & Blue Ray collection. He has been tracking them in a spreadsheet with these columns: Title Studio Media (Blue Ray or DVD) Year (year released) Genra (Action, SCIFI, Comedy, Animated, Western, Documentary, etc) Actors (all the listed actors separated by commas) Special Features (all the special features listed separated by commas) Rating (R, PG -13, PG, G, N for unrated) Price (the price he paid for it) You may want to create the spreads heet and enter some sample data, if it helps clarify the process. 11. What are some of the potential problems with this layout if carried directly into a database?
 Specifically address each of the three anomaly types: Insert, update, Delete. 12. which of the colum ns in the spreadsheet are multi -valued? 13. Create an Entity diagram that shows how you would translate the spreadsheet above into a database that conform s to First Normal Form. 14. Describe the process you went through to arrive at th e diagram for practice 3 . 15. List any “functional” dependencies you find, any major themes. Hands ON Database 213 16. Create a second Entity diagram that shows how you would translate the spreadsheet into a database that conforms to Second Normal form. 17. Describe the process you used for practice 6 . If you did not make any changes, provide your reasons for why you think your previous diagram also conforms to Second Normal Form 18. List any “transitive” dependencies you find. Describe why you believe they depend on a column that is not the key of the table 19. Create a t hird Entity Diagram that shows how you would bring the database into conformity with Third Normal Form. 20. Describe your process for practice 9, even if you made no changes from the previous diagram . Scenarios It is almost time to actually begin building the apartment database, but you must make sure that the design is solid and that it captures all the data required by Wild Wood Apartments. The first step is a des ign review; then you must review the diagram for completeness. To Do: Review the diagram you made from the previous chapter for all three levels of Normalization. Change the diagram to reflect the fully normalized design Document in writing why you made the changes you did, or why you did not need to make changes. Hands ON Database 214 Review the normalized diagram fo r completeness. Do the entities capture all the data needed to meet the business rules and needs of Wild Wood Apartments? Documentation : Save the normalized diagram with notes about changes made during the normalization process to your database notebook You have told Vince that you can begin building the database very soon now, maybe even next week.
 But before you do that you need to make sure the design is solid and complete. To Do: Review the diagram you made from the previous chapter for all three lev els of Normalization. Change the diagram to reflect the fully normalized design Document in writing why you made the changes you did, or why you did not need to make changes. Review the normalized diagram for completeness. Do the entities capture all the d ata needed to meet the business rules and needs of Vince’s Vinyl? Documentation : Save the normalized diagram with notes about changes made during the normalization process to your database notebook Hands ON Database 215 You have promised to begin building the database withi n the next couple of days. But before you do that you have to review the design for normalization and completeness. To Do: Review the diagram you made from the previous chapter for all three levels of Normalization. Change the diagram to reflect the fully normalized design Document in writing why you made the changes you did, or why you did not need to make changes. Review the normalized diagram for completeness. Do the entities capture all the data needed to meet the business rules and needs of Grandfield College IT Department? Documentation : Save the normalized diagram with notes about changes made during the normalization process to your database notebook The start of the double bind test is approaching rapidly. There is a great deal of pressure on you to begin building the actual database. Before you can do that, though, you must perform a final review to make sure the database is normalized and complete. To Do: Review the diagram you made from the previous chapter for all three levels of Normaliza tion. Change the diagram to reflect the fully normalized design Hands ON Database 216 Document in writing why you made the changes you did, or why you did not need to make changes. Review the normalized diagram for completeness. Do the entities capture all the data needed to me et the business rules and needs of Westlake? Documentation : Save the normalized diagram with notes about changes made during the normalization process to your database notebook Suggestions for Scenarios Normalization is difficult. The trick is to take each normal form one at a time. Look at each entity one at a time, to see if conforms to the first normal form. Make sure there are no repeating groups or muti - valued attributes. If there are break them out into new entities. Then repeat the process for the S econd Normal form. Look at each entity and make sure that it is about only one thing. Again, if you find an entity that is about more than one thing, break it into new entities. Finally, repeat the process for third normal form, looking for transitive dep endencies, attributes that depend on an attribute that is not the key, for their value. As with the design process itself, the normalization process benefits from discussion and multiple inputs.
 It is crucial to have others review the results. Hands ON Database 217 Chapter Five : Physical Design Now that she has the logical design completed, Sharon works on the physical design of the database. The first thing to decide is what Database Management System to use. After considering several Sharon decides on SQL Server Express. She crea tes a new database with a data file and a log file. She creates the tables in the new database, selecting the appr opriate data type and setting any constraints for each column. She also sets up the relationships among the tables . Finally, w hen she has it set up all the database objects, she enters 5 or 10 rows of sample data so she can test the database. Outcomes: Com pare Database Management Systems and determine which best suits current needs Implement a physical design of the database based on the logical ERDs. Choose appropriate data types for columns Enter sample data into tables Choosing the Management System Sha ron finally feels comfortable with her design. Now it is time to begin actually creating the database. The first question she must resolve is which Database Management System to use. One of the first criteria is that it shouldn’t cost the school anything. That still leaves open several options. Oracle Express or DB2 Express are tempting because she would love to explore them. But the fact that she doesn’t know them also means a longer learning curve. Additionally she knows that the IT staff is unfamiliar with them. The same holds true, though to a lesser extent for MySQL and PostGres SQL. Both are free and Hands ON Database 218 actually more powerful than any of the express editions, but she is less familiar with them. The IT staff has some familiarity with MySQL, b ut still Sharon doesn’t think she can afford the learning curve at this time. That leaves Access and SQL Server Express. Things You Should Know Choosing a DBMS Choosing the appropriate DBMS requires a great deal of analysis. There are several important fa ctors to consider. Compatibility with your network and operating systems Hardware and software requirements for the DBMS Features of the DBMS in relation to your database requirements Familiarity and expertise in the DBMS for database developers and IT Personal Price and Licensing requirements Product reliability and support Compatibility and hardware requirements It might seem obvious that if a RDMS is not compatible with you system, that you would exclude it from the list of possible candidates. For ex ample, if your system is running exclusively Unix or Linux o perating systems, SQL Server would out of the question because it will only run on Microsoft Windows Operating Systems. Equally, if DBMS requires more hard disk space, and RAM then your system cu rrently supports, you probably will look for a less demanding alternative. However, it is possible, that an RDMS has features that make it compelling enough to add hardware or to integrate another operating system into the network Hands ON Database 219 Features of the DBMS What features a DBMS supports is crucial to the decision. For a simple database, such as the tutor management database, almost any DBMS will do. All they need for features is to support a database with enough room for the records and support a relatively smal l number multiple simultaneous users Even these requirements may be more than some free RDMSs support. SQL Server and Oracle Express, for instance, both have file size limits. They may be sufficient for a small or moderately sized database, but larger data bases will rapidly run up against the limits. Additionally the free databases often have limits on how they can utilize the hardware. It is not uncommon to have limits on the amount of RAM that can be accessed or the number of processors. They will not be adequate for systems that require higher levels of performance. Open source databases such as MySql or Pos tGres are often good choices especially for web based applications. As with other RDBSs you need to match the features to your needs. Larger companie s often have need for “Enterprise” level features. Often their databases need 24 hour, 7 day s a week availability. If their database go es down they lose money. Enterprise features include “failover” features. =f a server goes down, it will fail over to a c opy of that server. The customer never knows a server failed. They also include tools for load balancing. If one server gets too much traffic, some of the traffic is shifted to another server. Other features might include, log shipping, mirroring, etc. Gen erally only the more expensive commercial servers such as SQL Server, Oracle, and DB2 support these Enterprise level features. One additional set of features has grown increasingly important. These are the Business Intelligence features that can be used fo r data warehousing and advanced data analysis. Again, typically, these are only available with commercial RDBSs. Hands ON Database 220 Familiarity and Expertise Familiarity and expertise are also important factors to consider. It is much easier to develop with tools with whic h you are familiar. It is also easier for IT to support. New systems, such as an unfamiliar RDBMS typically require training and learning time. However, if the features and need are compelling enough, it may be worth the expense and time to train developer s and support staff. Price and Licensing It is crucial to understand the pricing and licensing agreements that come with a DBMS. In a school, for instance, it is common for SQL Server or Oracle to be licensed for use in instructional classrooms. But using the RDBMS to support the actual school infrastructure such as the Tutoring program, requires an entirely different license agreement. You must make sure that the product you wish to use is licensed for the use you intend for it. Prices can vary from free to many thousands of dollars. Free isn’t always best, but you must balance the features DBMS against the budget and capabilities of the institution. Product Reliability and Support The reliability of a DBMS product is crucial if it is to meet your needs. Reliability includes things like processing data without errors, hours of availability, maintenance requirements. You should carefully research the reliability record for any DBMS you are thinking of adopting. Support can also be important. If you have qu estions about the product, or problems with it, what kind of help and response can you expect? Most DBMSs have online support and online community discussions. Some have live support. When you choose a DBMS, you should factor in the amount and kind of supp ort you think you will need. Hands ON Database 221 Microsoft Access isn’t free, but the school has a site license for it both for student and staff use. Access does offer some significant benefits. For one, it is familiar. Most staff members had Access on their desk tops and had at least opened it a couple of times. Also Access contains its own Form and Report builders making it easier to create a user friendly database application. But Access has its drawbacks as well. It has limits to how many simultaneous connections it can support. These limits can make it a questionable choice if you wish to create an internet front end. Also she had always found Access difficult to secure properly. SQL Server, on the other hand, has no limits on the number of simultaneous connections. It could work well as the back end of a web based application. Also, Sharon knows, the school uses SQL Server for a lot of its internal record keeping. Using SQL Express would make it easier to integrate with these systems at a later date. SQL Express was als o scalable. It was easy to upgrade from Express to a standard edition of SQL Server. She also knows how to secure SQL Server and she prefers its SQL query window to Access’.
 The chief drawback was the lack of Form Builders. To create an application she wou ld have to use an external programming environment such as ASP.Net. Thinking about it, she decides she prefers SQL server Express, but the final decision is Terry’s. At 9:00 when Sharon meets with her she presents her arguments. After some assurances that Sharon can build an application for her and the tutor’s to use, Terry gives the go ahead to use SQL Express. Creating the Database Later, Sharon opens her laptop and starts the SQL Server Management Studio. She connects to the instance of SQL Server E xpress. Then in the Object Explorer window she right clicks on databases and chooses “New Database.” Hands ON Database 222 Figure 93: New Database Dialog . (All screenshots courtesy of Microsoft Corporation) The New Database dialog window opens. This dialog lets Sharon name the database and its files. A SQL Server database always has at least two files: A data file that contains all the data including the data on table structures and relationships, and a log file that contains a running record of database transactions. She could add additional files and she could change the locations of the files, but f or now she will go with the default settings. She names the Database “Tutor,” and clicks the OK button. Database Transaction : Any action that a database takes, creating objects, adding rows, changing data in rows, removing rows, etc. Hands ON Database 223 Figure 94: New database dialog It takes just a couple of seconds to create the new database. Things You Should Know Physical Design The logical design of a database is the same, no matter what database management system you intend to use. The entities, attributes and relationships are looked at purely in terms of the logical structure of the data. Physical design involves adapt ing the logical design to the features and limitations of a particular database product. Hands ON Database 224 One of the first considerations in physical design is the location and structure of the database files themselves.
 Different database management systems manage files in different ways. Part of creating the physical design is understanding how your product stores and manages files. SQL Server databases have at least two files, a data file with the extension “.mdb” and a log file with the extension “.ldf.” The first or PR=MARY data file, contains not only the data in the database but also the meta data contai ning information about table structures, relations and other database objects. You can arrange for a SQL Server database to save its data in multiple files, but one must always be designated the Primary file. The log files track database transactions. If y ou have set the restore method to “Full” , you can use these files to restore all the transactions that have occurred since your last backup. By Default the database files are stored in C:\Program Fi les \Microsoft SQL Server \MSSQL.1 \MSSQL \Data , though this may vary on your computer depending on how SQL Server was installed. Generally, though it is not a good practice to store the database files and the log files on the same disk. We’ll look at this more fully in the chapter on Administration and Security. A second aspect of physical design involves data types.
 There is a general ANSI specification for basic data types, but each RDBMS adapts and adds to these types. These differences in data types are responsible for many of difficulties encountered when try ing to move data from one RDBMS to another. Date time data types especially vary from product to product. SQL Server 2008 supports these data types: Physical Design — database design adapted to the features and limitations of a particular RDBMS Data Types : the column specification that determines what kind of data can be stored in that column, character vs. numeric or date, for example Hands ON Database 225 Table 6: Numeric Data Types Data Type Description Range /Examples bigint 8 bytes integer -2^63 (-9,223,372,036,854,775,808) to 2^63 -1 (9,223,372,036,854,775,807) int 4 bytes -2^31 (-2,147,483,648) to 2^31 -1 (2,147,483,647) smallint 2 bytes -2^15 (-32,768) to 2^15 -1 (32,767) tinyint 1 byte 0 to 255 bit 1 bit 0, 1 or Null decimal User can set precsion up to 10^38 decimal(10,2) money 8 bytes -922,337,203,685,477.5808 to 922,337,203,685,477.5807 smallmoney 4 bytes - 214,748.3648 to 214,748.3647 numeric User can set precsion up to 10^38 Same as decimal float Approximate numeric type, the number of bytes depends on number - 1.79E+308 to -2.23E -308, 0 and 2.23E -308 to 1.79E+308 real Also approximate, 4 bytes - 3.40E + 38 to -1.18E - 38, 0 and 1.18E - 38 to 3.40E + 38 Table 7: Date Time types Data Type Description Examples /Range date New in 2008, stores date values January 1, 1 A.D. through December 31, 9999 A.D. Hands ON Database 226 datetime2 New. Stores date and time and allows user to set precision in fractions of seconds Same date range as above. Time range= 00:00:00 through 23:59:59.9999999 datetimeoffset Date and time but with timezone awareness same smalldatetime Smaller date time type January 1, 1753, through December 31, 9999 00:00:00 through 23:59:59.997 time New, you can set the precision in fractions of a second 00:00:00.0000000 through 23:59:59.9999999 Table 8: string and character types Data Type Description Examples char Fixed length ASCII text “Hefferson” --max 255 characters text Text stores large blocks of text data. the text and ntext data types are deprecated, use varchar(MAX) or nvarchar(MAX) 2,147,483,647 bytes. varchar Variable length ASCII “Los Angeles”, Maximum 255 characters unless MAX (MAX allows 2^31 -1 bytes) nchar Unicode fixed l ength Uses Unicode UCS_2 character set ntext Unicode large block. Deprecated nvarchar Unicode variable length text Table 9: Some Data Types Data type Description Examples image Variable length binary data. The image data type is deprecated and will go away 2^31 -1 bytes binary Fixed length binary 1 to 8000 bytes varbinary Variable length binary 1 to 8000 bytes unless you specify MAX, 2 ^31 -1 bytes uniqueidentifer Generates a unique identifier 6F9619FF -8B86 -D011 -B42D - Hands ON Database 227 00C04FC 964FF xml Stores xml data as XML, can be validated against schema collections, queried with xquery Sue Larson Sharon expands the database node in the Object Explorer and finds the new Database Tutor. Then she clicks on the + sign to expand Tutor and see its folders. She clicks on The folder Tables and then right clicks and selects “ New Table.” The table designer opens. The table designer has three columns: one for the column name, one for the data type and one with check boxes to allow or not allow nulls. Below the column designer is a window which lists all the properties of the selected column. For now Sharon i s going to ignore the properties and just focus on the columns and their data types. Sharon decides to start with the table Tutor. She opens Visio and looks back at her Entity Relation Diagram. Figure 95: Tutor Entity Diagram The first attribute is TutorKey , she enters that under the column name. She is thinking that the data contained in the column will be something like the student ID number. Even though it is a number, it will not be used as a number. That is nobody would ever use it to add, subtract, multiply or divide. Also, Tutor PK TutorKey TutorLastName TutorFirstName TutorPhone TutorEmail TutorHireDate TutorStatus Hands ON Database 228 some student IDs have leading zeros. A numeric type would drop any leading zeros. She looks through the drop down list of data types. There are four good candidates: char , nchar , nvarchar and v archar . All four store character data. She knows that char and nchar are “fixed length” data type. That means if you set the width of a char or nchar to 50, it will always write a 50 character block to the disk even if the actual content of the column is only 20 or 30 characters. The difference between char and nchar is the character set. Cha r uses the ASCII character set and nchar uses the larger and more complete Unicode character set. Nvarchar and varchar are variable length data types. That means, the database only writes the actual length of the data to the disk up to the set limit. So if you assigned the nvarchar data type to a column and set the upper limit to 50 characters but only entered 30 characters, the database would only write a 30 character block to the disk. Sharon decides to use the nchar data type. Student IDs, she knows, are of a fixed width. And setting the width to a particular value is one way of helping ensure the validity of the IDs. She also decides to go with the Unicode version. It takes no more space to store each character since the first 255 characters are identical to the ASCII codes , and it allows greater flexibility and compatibility. Things to Think About Fixed Length vs Variable character data types: The char and nchar data types are fixed length That means if you set a width of 50 characters, they will always write 50 characters to the disk even if you only use 20. The varchar and nvarchar are variable length. That means if you set the maximum length to 50 but only use 20, the variable length data type will only write 20. When do you think fixed length would be a better choice? When do you think variable length would be better? Which uses more processing power? Which uses more disk space? Unicode : an expanded character set that includes non Latin character sets such as Russian or Japanese Hands ON Database 229 Finally, she goes the toolbar and click the key icon, this designates it as a primary key and also unchecks the allow nulls box, since a primary key cannot be null. Now she enters the other columns from the Tutor Entity into the table designer. She decides that only the Tutor’s first name and email should be optional and allow nulls. When she is done the table definition looks like this: Column Name Data Type Allow Nulls *TutorKey nchar(10) TutorLastName nvarchar(50) TutorFirstName nvarchar(50) X TutorPhone nchar(10) TutorEmail nvarchar(50) X TutorHireDate Date TutorStatus nchar(10) Figure 96: Tutor Table (* key) She clicks the disk icon on the toolbar to save the table and names the table Tutor Figure 97: Save Table Dialog She clicks OK. Next, just to confirm to herself that it is there, she goes to the Object Explorer and expands the table folder. The tutor table is there. She knows that if she expands the table itself, she can view the columns and their data types. Hands ON Database 230 Figure 98: Object Ex plorer, Tables Things You Should Know NULLS NULLs represent an important concept in relational databases. A NULL is not a value as such. It signifies that a value is unknown. For a numeric type, a NULL is not the same as a zero . A zero is a value; NULL is a missing or unknown value. For a string or character type the NULL is not the same as an empty string. Again, it is unknown. Nulls have many consequences for a database. When you are summing a column in a table NULLs are excluded from the sum by default. This doesn’t really effect the end answer. But consider the effect when you are averaging a column. The mean average consists of the sum of the values in a column divided by the t otal number of rows. Here N ULLs do have an effect. If you count all the rows, even those with NULL it will be as if each NULL was a zero. The average returned will be lower than the actual average would have been because of the NULLS. The default action is usually to exclude them Null: a null represents the absence of a value. A null value is unknown. Hands ON Database 231 from the average. This makes more sense. The average returned reflects the actual values in the database, but the average is still only approximate because of the missing values. When you create a table you have a choice to allow NULLS or not. If you allow NULLS you can leave that column blank when you are entering data. If you do not allow nulls, you must enter a value into the column to continue. Generally, you should not allow NULLS for the columns that are crucial to your business rules. Assume, for example, that your business requires a customer name and a contact phone number for every transaction. Those fields should not allow nulls. But let’s say your business also prefers to have the complete address for each customer for later mailings and updates. The decision you have to make is whether to require the address by not allowing NULLS or to accept that some customers may not give their address and allow NULLS for those columns. Consider that making too many fields required by no t allowing NULLS can make a database too rigid to use in everyday situations. If a customer refuses to give their address, and those columns are required, the person entering the record either has to turn the customer down or enter meaningless data into t he columns. Now she turns to the task of taking each of the other Entities in her diagram and translating them into SQL Server Tables. First she creates the course table: Things to Think about: Nulls vs. Out -of-Bounds Data: In many older databases that did not have a provision for nulls, unknown data was represented by entering a value that was clearly out of bounds. A database tracking historical temperatures for a particular location, for instance, might put a value l ike 999.99 for an unknown temperature. What are some of the drawbacks you can see to using out -of-bounds data for a column? What advantages or disadvantages do you see in using NULLs for unkown data? Hands ON Database 232 Figure 99: Course Entity Colu mn Name Data Type Allow Nulls *CourseKey nchar(10) CourseName nvarchar(50) CourseDescription nvarchar(200) X Figure 100 : Course Table Things You Should Know About Creating a Table in SQL Creating tables in the graphical interface, is not the only way to create a table. It is also possible to create the table using the SQL programming language. SQL will be covered in Chapter Six. To create the course table in SQL, you would open a new query window. You would type in the fo llowing code: CREATE TABLE Course (CourseKey NCHAR (10) PRIMARY KEY , CourseName NVARCHAR (50) NOT NULL, CourseDescription NVARCHAR (200) NULL) Creating tables in code can be more efficient, but it does require that you have a full understanding of the structure of the database, its data types and its relationships. Next she creates the Ethnicity lookup table: Course PK CourseKey CourseName CourseDescription Hands ON Database 233 Figure 101 : Ethnicity Entity Column Name Data Type Allow Nulls *EthnicityKey nchar(10) EthnicityDescription nvarchar(50) X Figure 102 : Ethnicity Table Figure 103 : Student Entity For the student table, she is careful to make only the StudentKe y and the StudentLastName columns required. She also must make sure that the EthnicityKe y data type matches the data type of the EthnicityKey in the Ethnicity Table. They must match for the Foreign Key constraint to work. Sharon is not going to add the Foreign key c onstraint now, she will do that after the tables have been created. Column Name Data Type Allow Nulls *StudentKey nchar(10) StudentLastName nvarchar(50) StudentFirstName nvarchar(50) X StudentEmail nvarchar(100) X StudentPhone nvarchar(10) X Ethnicity PK EthnicityKey EthnicityDescription Student PK StudentKey StudentlLastName StudentFirstName StudentPhone StudentEmail StudentGender StudentAge StudentCitizen StudentWorkForceRetraining FK 1 EthnicityKey Hands ON Database 234 StudentGender nchar(1) X StudentAge int X StudentCitizen bit X StudentWorkerRetraining bit X EthnicityKey nchar(10) x Figure 104 : Student Table For the TutorCourse table she needs to create a composite key. Figure 105 : TutorCouse Entity It takes her a moment to figure out how to make it work in the designer. She finds that if she selects both columns and then clicks the key icon, both are marked as part of the key. Column Name Data Type Allow Nulls *TutorKey nchar(10) *StudentKEy nchar(50) Figure 106 : TutorCourse Table Now she works through the rest of the tables in her diagram. Figure 107 : StudentCourse Entity TutorCourse PK ,FK 1 CourseKey PK ,FK 2 TutorKey StudentCourse PK ,FK 1 StudentKey PK ,FK 2 CourseKey PK StudentCourseQuarter Hands ON Database 235 Column Name Data Type Allow Nulls *Student Key nchar(10) *CourseKey nchar(10) *StudentCourseQuarter nchar(10) Figure 108 : StudentCourse Table Figure 109 : Session Entity Column Name Data Type Allow Nulls *SessionDate Key Date *SessionTimeKey Time *TutorKey nchar(10) *CourseKey nchar(10) StudentKey nchar(10) X SessionStatus nchar(10) X SessionMaterialCovered nvarchar(255) X Figure 110 : Session Table Figure 111 : Request Entity Column Name Data Type Allow Nulls *RequestKey nchar(10) Session PK SessionDate PK SessionTime PK ,FK 1 TutorKey PK ,FK 1 CourseKey FK 2 StudentKey SessionStatus SessionMaterialCovered Request PK RequestKey FK 1 CourseKey RequestDate RequestStatus FK 2 StudentKey Hands ON Database 236 CourseKey nchar(10) RequestDate Date RequestStatus nchar(10) StudentKey nchar(10) For the Request Notes table Sharon realizes she needs something other than a nvarcha r data type for the RequestNoteText column. Figure 112 : RequestNote Entty The varchar and nvarchar data type has a maximum length of 255 characters. But there is another option called “MAX.” Use the MAX option allows the column to contain up to X bytes worth of data. The only drawback is that a column that uses the MAX da ta type can’t be searched directly or indexed. Column Name Data Type Allow Nulls *RequestNoteKey DateTime RequestNoteText nvarchar(Max) RequestKey nchar(10) Figure 113 : RequestNote Table Sharon has created all the tables. Now she wants to define the relationships among the tables. There are several ways to do this, but one of the easiest is to create a Database Diagram and do it graphically. She right clicks on the Database Diagram folder under Tutor and chooses New Database Diagram. She gets the following warning: RequestNote PK RequestNoteKey RequestNoteText FK 1 RequestKey Hands ON Database 237 Figure 114 : Support Objects Query Dialog This puzzles her for a second. She wonders what she did wrong, but then she reads the dialog box more carefully : “Do you wish to create them?” She clicks “Yes, “and then right clicks on the Database Diagram folder again. This time she gets a new diagram and a list of all the tables in her database. Figure 115 : Add Table Dialog She adds all the tables and moves them around until they fit on her screen. Hands ON Database 238 Figure 116 : Database Diagram She decides to start with the relationship between Tutor and T utorCourse . She selects TutorKey , puts the cursor in the gray to the lef t of the column, holds the mouse button down and drags the mouse to the TutorCourse table. Then she releases the mouse. A Table and Columns relationship dialog box appears. Hands ON Database 239 Figure 117 : Table and Columns Dialog She confirms that the Primary key table and Foreign Key table are correct, and that the columns names are correct. She accepts the default name for the relationship and clicks OK. A second dialog box appears that allows a user to set additional properties for the foreign key relationship. . Hands ON Database 240 Figure 118 : Foreign Key Dialog For now she just clicks OK, and the relationship is created. In the diagram the relationship is represented as a line with a key on the end pointing to the table on the One side of the relationship, the table with the primary key. The connecter to the many side of the relationship is represented by an infinity sign.
 Now Sharon adds the relationship between Course and TutorCourse. Again the Tables and Columns dialog appears. She makes sure it is correct and presses OK, and then OK again for the second dialog. Sharon continues in this way until she has created all the relationships. The Database Diagram now looks like this: Hands ON Database 241 Figure 119 : SQL Server Tutor Database Diagram Sharon, saves the diagram. SQL Server asks if she wants to save the changes to the underlying tables.
 She clicks “Yes” and saves the diagram and the relationships. Things You Need to Know Referential Integrity In the pr operties for a Relation, there is the property “Enforce Foreign Key Constraint.” The default value is “Yes”. Enforcing the Foreign Key constraint means ensuring that no Foreign Key value can be Course CourseKey CourseName CourseDescription Ethnicity EthnicityKey EthnicityDescription Request RequestKey CourseKey RequestDate RequestStatus StudentKey Session SessionDateKey SessionTimeKey TutorKey CourseKey StudentKey SessionStatus SessionMaterialCovered Student StudentKey StudentLastName StudentFirstName StudentPhone StudentEmail StudentGender StudentAge StudentCitizen StudentWorkforceRetraining EthnicityKey StudentCourse StudentKey CourseKey StudentCourseQuarter Tutor TutorKey TutorLastName TutorFirstName TutorPhone TutorEmail TutorHireDate TutorStatus TutorCourse TutorKey CourseKey RequestNote RequestNoteKey RequestKey RequestNoteText Hands ON Database 242 entered that does not have a corresponding value in the primar y key table. For instance, you cannot enter a customerkey in a Sales table (where the customerKey is a foreign key relating back to a Customer table) unless that customer already exists in the Customer table. Or, for another example, you cannot have order details that don’t relate to an existing order. Another commonly used expression for enforcing the foreign key constraint is “enforcing referential integrity.” Enforcing referential integrity protects your database from orphan data. Consider the Order /Order Details table mentioned above. It is almost always necessary to break an order or sale int o two tables. The first table, Orde r, contains what you might consider the header information: the date, the customerID, the ID of the employee processing the order. The sec ond or “detail” table, consists of the line items, one row for each item ordered. The details are tied to the order by an order key. Enforcing referential integrity ensures that there won’t be any details, any line items, that aren’t associated with a vali d order. Choosing not to enforce referential integrity opens the risk of having details that are not associated with any order. They are fragments of garbage data that can seriously affect any data analysis. A database is only as good as its data. Changes to the data in a database are the results of one of three actions: Insert, update, or delete. Inserts enter new data into the database. Updates change existing data. Deletes remove rows of data from the database. Enforcing referential integrity does impos e some important restrictions on these actions. Action Effect of Enforcing Referential Integrity INSERT You must enter data into the parent (primary key) table before you can enter data into a child(foreign key) table. Example: You must enter the Customer information before entering the sale information UPDATE 1. You cannot change the primary key value for any record in the parent table Referential Integrity: exists when every foreign key relates to an existing primary key. The re are no orphan records in child tables that have no reference in a parent table Hands ON Database 243 without also changing the related foreign key. This creates a dilemma because both must be changed simultaneously. You can either suspend referential integrity w hile making the update or use Cascading Updates (see below) 2. You can only update or change a foreign key in a child table to one that has a matching value in a parent or primary key table DELETE You cannot dele te a row in a primary key table unless all related records are first deleted in the foreign key table. Example: you can’t delete an order unless all the order details for that order are first deleted< In the properties of a relationship, you have the option of setting what are called Referentia l Integrity actions. One of those actions is Cascade Update and another is Cascade Delete . Setting Cascade Update means that if y ou change the primary key of a row in the parent table, the database management system will automatically update all the rela ted foreign keys in the child table. This can be useful, especially if you have a volatile value for your primary key —something like a telep hone number or an email address. Setting Cascade Delete means that if you delete a row in a primary key table, all r elated rows in a child table will also be deleted. This protects the referential integrity and prevents orphan rows, but it is very dangerous. Imagine accidentally deleting a customer and having all their transactions vanish as well. Cascade delete is some thing that should be used with great caution. Sharon sets back and sighs. She has done it. She has taken the logical design she created in Visio and has translated it into the physical tables of SQL Server Express. Her next step is to add some sample dat a to Things to Think About Using Referential Integrity: Can you think of any reasons why you might not want to set the referential integrity constraints? What would you gain by not setting them? What would you risk? Hands ON Database 244 the tables so she test the database and make sure the database meets all the requirements and fulfills all the business rules. Once again, she starts with the Tutor table. She right clicks on the table in the Object Explorer and selects Open Table . Th is opens the table for reading or entering data. She decides she needs about five tutor records for now. She enters some typical tutor data. TutorKey TutorLastName TutorFirstName TutorPhone TutorEmail TutorHireDate TutorStatus 980010000 Roberts Martha 2065551467 1/6/2010 Active 980010001 Brown Susan 2065553528 2/1/2009 Active 980010002 Foster Daniel 2065553490 2/12/2009 Active 980010003 Anderson Nathan 3065556320 Null 3/2/2009 Inactive 980010004 Lewis Ginger 2065552985 3/15/2009 Active Figure 120 : Tutor table data When she is done, she closes the Tutor table and right clicks on the Course table in the object explorer.
 She opens it for data entry. There is some method in which tables she chooses to do first. She knows that she needs to enter data into the tables on t he primary key or one side of relationships before she can enter data into the foreign key side. Otherwise she will get “data integrity” errors saying there must be a related record in the primary key table. Things You Should Know Sample Data Before you p ut any database into use, you should test it to make sure that it meets all the requirements and business rules. Part of this is entering sample data. The sample data should be as real as possible.
 =ncorporating existing data is ideal. =f you don’t have ex isting data, you can make up sample data. But there are some things you should consider: Make sure your sample data is complete enough to test all the business rules Make sure the data is varied enough to represent a variety of likely situations Hands ON Database 245 Make sure the data contains some exceptions and possibly even errors so you can test how the database handles those She adds a few samples course to the Course table: CourseKey CourseName CourseDescription ITC110 Beginning Programming Programming using C# ITC220 Introduction to Database Overview of database design and topics ITC255 Systems Analysis Systems Analysis and Design MAT107 Applied Math Applied Math for Computers ENG211 Technical Writing Technical Writing for information Technology WEB110 Beginning Web Page Design Basic xhtml ITC226 Database Administration SQL Server Administration Figure 121 : Data For Course Table Next she enters the Ethnicities into the Ethnicity table: EthnicityKey EthnicityDescription Caucasian White, European origin Asian Chinese, Japanese, Korean, Southeast asian AfrAmeri African American or of African origin Hispanic Mexican, Central or South American, Caribean Pacific Pacific Islander Mideast Arabic or Persian Other Other or not disclosed Figure 122 : Ethnicity Table Data The TutorCourse table consists of only foreign keys. Sharon reopens the Tutor and Course tables and makes sure that each of the keys she enters is correct. TutorKey CourseKey 980010002 ITC255 980010002 ENG211 980010004 MAT107 980010000 WEB110 980010001 ITC220 980010001 WEB110 980010003 ITC110 Figure 123 : TutoCourse Data She enters twelve students. Student Table Hands ON Database 246 StudentKey StudentLastName StudentFirstName StudentEmail StudentPhone 990001000 Peterson Laura Null 2065559318 990001002 Carter Shannon 2065554301 990001003 Martinez Sandy 2065551158 990 001004 Nguyen Lu 2065552938 990001005 Zukof Mark null Null 990001006 Taylor Patty 2065552076 990001007 Thomas Lawrence Null Null 980001008 Bradbury Ron 2065557296 980001009 Carlos Juan 2065559134 009001010 Min Ly 2065552789 Figure 124 : Student table StudentGender StudentAge StudentCitizen StudentWorkerRetraining EthnicityKey F 23 True False Caucasian F 32 True True AftAmer F 18 True False Hispanic M 19 False False Asian Null Null Null Null Null F 42 True True Caucasian M 24 True False Caucasian M 53 True True Caucasian M 25 False False Hispanic F 20 False False Asian Figure 125 : Student Table cont. Each student can take multiple courses, so Sharon takes each student and ties them to two or three courses. She also separates the enrollments into two quarters, because she knows the database will need to store several quarters at a time and it will be necessary to make sure you can pull out the data for only the quarter in question. StudentKey CourseKey StudentCourseQuarter 990001000 ITC220 Fall09 990001000 ITC110 Fall09 990001000 WEB110 Fall09 990001002 ITC220 Fall09 990001002 ITC110 Fall09 990 001004 MAT107 Fall09 990 001004 WEB110 Fall09 990001007 ITC110 Fall09 980001009 ITC110 Fall09 980001009 ITC220 Fall09 Hands ON Database 247 980001009 MAT107 Fall 09 990001002 ENG211 Winter10 990001002 ITC255 Winter10 990001003 ENG211 Winter10 990001003 ITC255 Winter10 990001005 MAT107 Winter10 009001010 MAT107 Winter10 009001010 ITC255 Winter10 009001010 ENG211 Winter10 990001000 ITC255 Winter10 990001000 MAT107 Winter10 Figure 126 : StudentCourse table The Session table is one of the most difficult to create sample data for. Sharon wants to enter some historical data for sessions that have already been held as we ll as enter some open sessions. Sessions that haven’t been completed have a NULL under the co lumn SessionStatus . Sessions that haven’t been signed up for yet have NULLS under StudentKey and SessionStatus . The difficulty is making sure that the data matches the data in the other tables. The tutors should only be listed for the courses they have signed up to tutor and the students should only receive tutoring for those classes they are attending that quarter. SessionDateKey SessionTimeKey TutorKey CourseKey StudentKey SessionStatus SessionMaterial covered 10/20/2009 14:00 98001000 1 WEB110 990001000 C CSS 10/20/2009 13:00 980010003 ITC110 990001000 C For next loop 11/20/2009 10: 30 980010001 ITC220 990001002 C Relations 11/5/2009 10:00 980010001 ITC220 Null NS Null 11/10/2009 13:00 980010004 MAT107 990 001004 C Binary Numbers 11/10/2009 14:00 980010001 WEB110 990001000 C Web Forms 1/15/20 10 9:30 980010002 ITC255 990001000 C Use Cases 1/20/2010 11:00 980010002 ENG211 990001003 C Document structure 1/22/20120 14:00 980010004 MAT107 990001005 NS Null 2/5/2010 10:30 980010002 ITC255 990001000 C Feasibility 2/10/2010 13:30 980010004 MAT107 Null Null Null 2/10/2010 14:00 980010004 MAT107 Null Null Null 2/13/2010 10:00 980010002 ITC255 Null Null Null 2/14/2010 11:00 980010002 ENG211 Null Null Null Figure 127 : Session Table Finally, for the request table, she enters only a single request . Hands ON Database 248 RequestKey RequestDate CourseKey RequestStatus StudentKey 1001 1/5/2010 ITC226 Active 009001010 Figure 128 : Request Table The request notes includes two Notes in the RequestNotes table: RequestNoteKey RequestID RequestNoteText 1/6/2010 2:00 PM 1001 Only offered once an year and not a lot of requests for this class 1/10/2010 10:00 AM 1001 No students available, because a capstone class, would have to get someone off campus Figure 129 : RequestNote Table Sharon has completed created the database, built the tables and added some sample data, now she is ready to start testing it with some SQL queries Documentation In many ways the database is self documenting. The structure of each table, the columns, their data types, and all constraints are already stored in system tables and can be queried. But it is not uncommon, and can be quite useful, to create a separate data dictionary, that lists all the database objects such as tables, along with their column names and data types. If the database is corrupted or lost somehow, a separate data dictionary can be used to help rebuild it. It can also serve as an e xcellent reference for application developers or future administrators of the database Things We Have Done We have translated our logical design into a physical design We have created a database in SQL Server We have create tables We have assigned data ty pes to columns We have determined which columns should allow nulls and which should not We have set primary keys We have created a database diagram Hands ON Database 249 We have create relationships among the tables We have entered sample data into those tables Things to Look u p 1. What are some best practices for managing data files and logs? 2. Look up the data types for Oracle. :ow do they differ from SQL Server’s. 3. Look up the ANSI data types. How do they differ from SQL Server and Oracle? Vocabulary Match the vocabulary term with its definition 1. Data types 2. Database Transactions 3. NULL 4. Physical Design 5. Referential Integrity 6. Unicode a) An extended language set that includes non Latin characters b) A missing or unknown value for a column in a table c) Every action in a database d) Where every foreign key refers to an existing primary key in a related table e) Database Design adapted to the features and limits of a particular RDBMS Hands ON Database 250 Practices Perfect Pizza is a pizza delivery shop. They only create pizzas for home delivery. They have recently designed a new database to track their sales. They use the Customer’s telephone number for a key column in the customer table. They are interested in households not individuals. They need the street address and zip code for the delivery. They only deliver to three zip codes 98001, 98002 and 98003. With the zip code they can fill in city and state information later, though they prefer to do it when they enter a new customer. In the OrderDetail table they store the price charged for two reasons: one, it may be different than product price due to a discount or special and two, it keeps a historic record of the price. That way, if they change the price in the product table, it doesn’t affect the prices charged in past sales. Here is the Entity Re lation Diagram for the database. (We will use this database again in future practices.) Hands ON Database 251 Figure 130 : Pizza ERD 1. What do you think would be the appropriate data types for CustomerPhoneKey and CustomerZip? Explain. 2. What do you think would be the appropriate data types ProductUnitSize and ProductUnitPrice? Explain. 3. Create the Database in SQL Server Customer PK CustomerPhoneKey CustomerLastName CustomerAddress 1 CustomerAddress 2 CustomerCity CustomerState CustomerZip Product PK ProductKey ProductName ProductUnitSize ProductUnitPrice Employee PK EmployeeKey EmployeeLastName EmployeeFirstName EmployeeHireDate CustomerOrder PK OrderKey OrderDate OrderTime FK 1 CustomerPhoneKey FK 2 EmployeeKey OrderDetail PK OrderDetailKey FK 1 OrderKey FK 2 ProductKey OrderDetailQuantity OrderDetailPriceCharged Hands ON Database 252 4. Build the tables for the database in the Entity Relation Diagram above in SQL Server , choosing appropriate data types (Use the s ample data in practice 4 below as a guide.) 5. Create a Database Diagram and use it to create the relationships among the tables 6. Add these sample records to the appropriate tables Customers 2065552123 Lamont NULL 161 South Western Ave NULL NULL 98001 2065553252 Johnston Apt. 304 1215 Terrace Avenue Seattle WA 98001 2065552963 Lewis NULL 520 East Lake Way NULL NULL 98002 2065553213 Anderson Apt 10 222 Southern Street NULL NULL 98001 2065552217 Wong NULL 2832 Washington Ave Seattle WA 98002 2065556623 Jimenez Apt 13 B 1200 Norton Way NULL NULL 98003 Employee Table cmanning Manning Carol 3/12/2010 btayor Taylor Bob 4/16/2009 skristoph Kristopherson Stephen 6/2/2010 Product table soda Soda bottle 2 Liter bottle 3.75 brdstks Breadsticks 8 per pack 2.50 basicS Basic Pizza Small 8 inch 5.35 basicM Basic Pizza Medium 12 inch 7.35 basicL Basic Pizza Large 18 inch 13.50 specialS Specialty Small 8 inch 6.35 specialM Specialty Medium 12 inch 9.25 specialL Specialty Large 18 inch 15.00 top Additional toppings I cup 1.00 CustomerOrder table 1000 10/8/2010 2:15 PM 2065552963 cmanning Hands ON Database 253 1001 10/8/2010 2:21 PM 2065556623 cmanning 1002 10/8/2010 2:30 PM 2065552963 cmanning 1003 10/8/2010 3:15 PM 2065552123 skristoph 1004 10/10/2010 11:15 AM 2065552217 btaylor 1005 10/10/2010 12:02 PM 2065556623 btaylor Order Detail Table 1 1000 soda 2 7.25 2 1000 brdstks 1 2.50 3 1000 specialM 1 7.35 4 1001 specialL 1 15.00 5 1002 soda 2 7.25 6 1002 basicM 3 20.00 7 1003 basicM 1 7.35 8 1003 top 4 4.00 9 1004 basicL 1 13.50 10 1005 basicM 2 14.70 Scenarios You have completed the designs for the apartment management database. You reviewed it and all the business rules with the owners and they are eager to proceed. Now you need to take your design and translate it into an actual database. Once you have done that you know that you will need to enter data to test the database, to make sure it does, in fact, store all the required data. 1. Review your diagram for the database making sure that the d esign is complete and normalized. 2. Create the database in SQL Server 3. Create the tables in the new database, selecting appropriate data types for the columns, setting a primary key for each table, and setting allow nulls as appropriate Hands ON Database 254 4. Create a database diag ram and create the relationships among tables 5. Add some sample data to each table 6. Documentation: Make a Data Dictionary that lists each table, all the columns for that table, the data types for each column. Vince is eager to get going. Just today he had a customer come in and sell him a dozen old albums. One is quite rare and could be worth a lot of money. Vince doesn’t want to lose track of it. :e is ready to get organized and start entering his transactions in the database. You review your design with hi m and promise that you will begin building the database immediately. But, you remind him, it is important to test the database before actually starting to use it for the business. 1. Review your diagram for the database making sure that the design is complet e and normalized. 2. Create the database in SQL Server 3. Create the tables in the new database, selecting appropriate data types for the columns, setting a primary key for each table, and setting allow nulls as appropriate 4. Create a database diagram and create t he relationships among tables 5. Add some sample data to each table 6. Documentation: Make a Data Dictionary that lists each table, all the columns for that table, the data types for each column. Hands ON Database 255 The management is afraid of a software audit. The chief system s manager just came from a meeting where he heard that a school had just been fined $25,000 for illegally installed software. The current tracking system probably couldn’t hold up to an audit. =t is crucial that this new database be up and running soon. Yo u assure them that it will be done as soon as is possible, but you want to make sure that it really does what it is supposed to do. If you implement before it is ready it might make matters worse rather than better. 1. Review your diagram for the database mak ing sure that the design is complete and normalized. 2. Create the database in SQL Server 3. Create the tables in the new database, selecting appropriate data types for the columns, setting a primary key for each table, and setting allow nulls as appropriate 4. Create a database diagram and create the relationships among tables 5. Add some sample data to each table 6. Documentation: Make a Data Dictionary that lists each table, all the columns for that table, the data types for each column. The Drug study is falling into place. Several potential participants have already been interviewed. It is vital that the database be in place soon. You assure them that you are ready to begin actually making Hands ON Database 256 the database objects, but that it is essential that you test it and evalu ate it before they start to commit data to it. You promise that you will deliver it as soon as possible. 1. Review your diagram for the database making sure that the design is complete and normalized. 2. Create the database in SQL Server 3. Create the tables in the new database, selecting appropriate data types for the columns, setting a primary key for each table, and setting allow nulls as appropriate 4. Create a database diagram and create the relationships among tables 5. Add some sample data to each table 6. Documentati on: Make a Data Dictionary that lists each table, all the columns for that table, the data types for each column. Suggestions for Scenarios Make sure your primary keys and foreign keys have the same data type and same precision (length).
 Follow your diagra m and make one table at a time. In the Database Diagram, always drag the relationship from the primary key to the foreign key. Before confirming the relationship, always make sure that the table and column names are correct in the dialog box. If you need to adjust a table in the Database Diagram, you can right click on it and under view, select normal. That will display the column names, data type and whether it will accept nulls. You can edit the table in this view. When entering data, you must enter data in the primary key tables before you can enter into the child or foreign key tables. The foreign key must match the primary key exactly. Hands ON Database 257 Chapter S even : SQL Now that Sharon has built the database and entered some data, she sets out to test the design and make sure she can satisfy the business requirements. To do this she is going to use SQL, and Sql Express’s query analyzer. Outcomes By the end of this chapter you should be able to Name the main events in the development of SQL Run SELECT queries with a variety of criteria Use the Aggregate Functions COUNT, AVG, SUM, MIN, and MAX Use Date Time and other built in functions Join two or more ta bles in a query INSERT, UPDATE and DELETE records Use SQL to test business rules Running Queries It has been a long day. Sharon had two classes of her own today and then she tutored three students in beginning database. But she feels some pressure to finis h with the database. Before she can give it to Terry, she needs to test it to make sure it can do all the things that are required of it. She has entered the sample data, now she is going to run some sample queries. Hands ON Database 258 She takes out her laptop and sits at th e kitchen table. She starts the Sql Server Management studio and opens up the databases in the object window. She selects the Tutor database and right clicks. Then she selects New Query Window: Figure 131 : New Query To get started, in the query window she types SELECT * FROM Tut SQL Server 2008 provides some intellesen se to help her pick a table: Figure 132 : Intellesense She clicks Tutor in the list and then clicks the execute button and gets these results TutorKey TutorLastName TutorFirstName TutorPhone TutorEmail TutorHire Date TutorStatus 980010000 Roberts Martha 2065551467 2010 -01-06 Active 980010001 Brown Susan 2065553528 2009 -02-01 Active 980010002 Foster Daniel 2065553490 2009 -02-12 Active Hands ON Database 259 980010003 Anderson Nathan 3065556320 NULL 2009 -03-02 Inactive 980010004 Lewis Ginger 2065552985 2009 -03-15 Active Figure 133 : Result table Things You Should Know SQL is the programming language used for manipulating database objects and data in relational databases. It is both an ANSI (American National Standards Institute)and an ISO (International Standards Organization) standard. The first version of SQL was developed at IBM in the 1970s to work with their RBase relational database.
 The firs t ANSI standard for SQL was issued in 1986. The ISO committee ratified the standard in 1987. This first standard was not widely used. Database technologies had already moved past it. Most database manufacturers had already added features that were not incl uded in the standard. A major revision was issued in 1992. This standard was much more robust and is still the de facto standard of many RDMSs today. More changes were added to the standard in 1999 to define the use of triggers and procedures. Revisions i n 2003 and 2006 defined how to incorporate XML and XQuery into SQL. Most RDBMSs comply with the standard to a fairly high degree. What this means for the user is that the SQL they write for one product will translate fairly easily to another product. Much of the SQL you write for S QL Server, for instance, will work without change in Oracle or MySQL. Each RDBMS, however is free to add proprietary features on to SQL as well as implementing the standard. Typically these features are additional functions or ad ministrative extensions. The Nature of SQL SQL –the programming language use to manipulate data and data objects in a Relational Database Hands ON Database 260 SQL is a declarative language. This means it is different from the Procedural languages you may have encountered in other programming such as C++ or Java, or C# or Visual Basic. In those languages you have to specify how something is to be done. You have to careful ly list each step in the proper order to accomplish a task. In SQL, you say what you want done, not how to do it. In the example above, for instance, Sharon writes SELECT * FROM Tutor The SELECT tells the DBMS you want to retrieve data. The * is a wild card that says select all columns. The FROM keyword directs the RDBMS to a table in the current database. The statement as a whole declares “return all the columns and all the rows from the table Tutor.” Again, it declares what you want to do, not how to do it. The RDBMS determines how to process the request.
 Differen t RDBMS’s will process it differently because they have developed different query optimization engines in order to produce the results as efficiently and quickly as possible. SQL is not case sensitive, though the column names and values can be if the datab ase options are set to be case sensitive. It is traditional, however, to type SQL keywords in all uppercase for readability. SQL also ignores most white space. That means that you can organize an SQL statement on the page any way that makes it most readabl e to you. In many DBMSs SQL statements are terminated by a semi -colon. Declarative Language — a language in which a programmer declares what they want to do not how they want to do it Procedural Language — a language in which a programmer defines how to do a given procedure Things to Think About What are the advantages of a declarative language as opposed to a procedural language? What advantages might a procedural language have over a declarative language? Hands ON Database 261 SQL server does not require the semi -colon , though using one can be a good habit to develop. In this book the semi - colons are not included. Usually , SQL is divided into at least two bro ad areas of fu nctionality: Data Manipulation Language (DML), which includes all the commands for selecting and manipulating database data and Data Definition Language (DDL) which includes all the commands fo r creating, altering and dropping database objects such as tables, procedures, constraints and indexes. In this book we are only going to focus on the DML. Sharon decides to run another query just to check the data. She types another SQL Sta tement into the Query window. She selects the statement so that only it will run when she clicks execute. SELECT StudentLastName , StudentFirstName , StudentEmail FROM Student Figure 134 : Selected SQL Statement She executes the statem ent and gets these results: StudentLastName StudentFirstName StudentEmail Min Ly Bradbury Ron Carlos Juan Peterson Laura NULL Carter Shannon Martinez Sandy Nguyen Lu Zukof Mark NULL Taylor Patty Thomas Lawrence NULL Figure 135 : Result table Things you should know The basic SELECT statement The syntax for the simplest SELECT Statement is DDL — Data Definition Language DML — Data Manipulation Language Hands ON Database 262 SELECT [Column1], [Column2], etc FROM [Table] You can select any number of columns from the database table. The columns are separated by commas, but there is no comma after the last column in the list. The columns are returned in the order they are listed. So in our example: SELECT StudentLastName , StudentFirstname , Studentemail FROM Student Sharon also used a variation of this syntax: SELECT * FROM Tutor The asterisk (*) is a wildcard character that tells the RDBMS to return all the columns in the table. The advantage of this is obvious —you don’t have to key in all the columns. But there are disadvantages. For one, you have no say in the order in which the columns are returned. They will simply be returned in the order they have in the table. Also the wildcard method is less efficient. The database must first query the system table to identify the columns, and then query the data table to access the data. And, finally, in SQL code which is embedded in an application (such as a web page) there is no guarantee that the columns returned will always be the same. If someone modified the database the query may return unexpected columns and cause errors in the program. In gene ral, it is better to specify the columns you wish returned, though the wildcard method can be useful during testing and development. DISTINCT Sometimes you only want to return one instance of each value. For inst ance, suppose you want to run a query on the session table to see all the tutors that have scheduled sessions. If you run SELECT tutorkey FROM Session Hands ON Database 263 You will get these results : TutorKey 980010003 980010001 980010001 980010004 980010001 980010001 980010002 980010004 980010004 980010002 980010004 980010004 980010002 980010002 Figure 136 : tutorkey results Each tutorkey repeats for as many sessions as the tutor is scheduled for. If you only wanted to see only one instance of each TutorKey , you can use the DISTINCT key word: SELECT DISTINCT tutorkey FROM Session This results in the following: TutorKey 980010001 980010002 980010003 980010004 Figure 137 : Distinct Results DISTINCT operates on the whole row, not on individual columns. The whole row must be identical to be excluded. Calculations You can perform calculations in a Select clause. For instance you can calculate how many hours are in a typical year with a statem ent like: SELECT 365 * 24 Hands ON Database 264 The query will return a column labeled “No column Name” with the value “8760.” To name the column you can alias it —see below. More useful calculations, perhaps, can be made by using the math operators with values in table columns. Assume, for instance that you had a table that stored the item number, the price of an item and the quantity ordered. You could calculate the total due with a query like the following: SELECT ItemNumber , ItemPrice , Quantity , ItemPrice * Quantity FROM Cu stomerOrder Below is a table of the arithmetic operators : Table 10: Arithmetic Operators Operator Description * Multiplication / Division + Addition - Subtraction % Modulus (returns the remainder in integer division) Some of the operators serve more than one purpose. The *, for instance, serves as both a wild card and the multiplication symbol. The % serves both as the modulus operator and as a wildcard in a WHERE Clause using the LIKE key word. SQL determines the ap propriate function by context. If there are numeric values on both sides of the *, or columns containing numeric values SQL knows the * is the operator for multiplication. If the % is in the SELECT clause it knows it is a modulus operator; if it is in a WHERE Clause with the LIKE keyword it knows that it is a wild card. The + operator behaves similarly. If the values on both sides of the operator are numbers the + performs addition. If the values on both sides are of a character type then it concatenates the character strings together. If the values are mixed, one character, one numeric, SQL throws an error. Hands ON Database 265 The division operator also behaves differently depending on whether the values around it are of an integer type (no decimal parts) or float (have deci mal parts). If the dividend and divisor are both integers the division will result in an integer value. This means that any decimal part will be discarded. If even one of the values is of a float type, then the result will default to a float value and the result will contain any decimal amount. The modulus operator % returns the remainder of an integer division. Here are some examples: Table 11: integer Division Equation Result SELECT 10 /3 3 (integer division) SELECT 10 /3.0 3.33333 (float division) SELECT 10 %3 1 (modulus) Order of Operations SQL follows the same order of operations as Algebra. That is all multiplications and divisions are solved first moving left to right, and then all additions and subtractions are also performed left to right. In the following statement 3*5 is evaluated first for 15, then 4/2 for 2, thirdly 1 is added to the 15 for 16 and finally 2 is subtracted from 16 for a result of 14. SELECT 1 + 3 * 5 - 4 /2 You can control the order by using p arenthesis (). Whatever is in the parenthesis is calculated first. If parenthesis are nested SQL works from the innermost parenthesis outward. For instance SELECT (((1 + 3) * 5) - 4) /2 results not in 14, but in 8. Aliasing Hands ON Database 266 When you design your database tables, the column names should be descriptive and conform to naming conventions, but good column names do not necessarily make for good labels in a query or report. You can change the label for the result i nstance by “aliasing” the column. The basic way to do this is by using the AS keyword. Thus, in Sharon’s query the column “StudentLastName” is aliased as “Last Name in the results. StudentFirstName AS "First Name” As mentioned earlier, SQL Server disting uishes between single quotes and double quotes. Single quotes are reserved for character or date values and double quotes are reserved for column names. You can also use square brackets. StudentFirstName AS [First Name] Additionally, you can leave out the AS keyword. It is optional. StudentFirstName [First Name] If the alias consists of a single word with no spaces you do not even have to include the brackets or quotes. All of the following are equivalent: StudentGender AS "Gender" StudentGender AS [Gender] StudentGender "Gender" StudentGender [Gender] StudentGender Gender Although optional, it is recommended to use the AS keyword and quotes or brackets to identify the alias for readability and clarity . Alias — a substitute name for a column or a table Hands ON Database 267 Sharon thinks the query results would be better if they were sorted by last name. She adds the key words ORDER BY. The query now looks like this: SELECT StudentLastName , StudentFirstname , Studentemail FROM Student ORDER BY StudentLastName She executes the query and gets the following results: StudentLastName StudentFirstName StudentEmail Bradbury Ron Carlos Juan Carter Shannon Martinez Sandy Min Ly Nguyen Lu Peterson Laura NULL Taylor Patty Thomas Lawrence NULL Zukof Mark NULL Figure 138 : Table Ordered by Last Name Ne xt Sharon decides to list the records from the Session table. She wants to sort them by the Session date, showing the more recent dates first. She writes the following query SELECT * FROM Session ORDER BY SessionDate DESC The DESC keyword causes the records to be sorted in descending order —z to a, 10 to 1 etc. She executes the query and gets this result: SessionDateK ey SessionTimeKey TutorKey CourseKey StudentKey SessionStatus SessionMaterialCovered 2010 -02-14 11:00:00.0000000 980010002 ENG211 NULL NULL NULL 2010 -02-13 10:00:00.0000000 980010002 ITC255 NULL NULL NULL 2010 -02-10 14:00:00.0000000 980010004 MAT107 NULL NULL NULL Hands ON Database 268 2010 -02-10 13:30:00.0000000 980010004 MAT107 NULL NULL NULL 2010 -02-05 10:30:00.0000000 980010002 ITC255 990001000 C Feasibility 2010 -01-22 14:00:00.0000000 980010004 MAT107 990001005 NS NULL 2010 -01-20 11:00:00.0000000 980010004 ENG211 990001003 C Document Structure 2010 -01-15 09:30:00.0000000 980010002 ITC255 990001000 C Use Cases 2009 -11-20 10:30:00.0000000 980010001 ITC220 990001002 C Relations 2009 -11-10 14:00:00.0000000 980010001 WEB110 990001000 C Web Forms 2009 -11-10 13:00:00.0000000 980010004 MAT107 990001004 C Binary Numbers 2009 -11-05 10:00:00.0000000 980010001 ITC220 NULL NS NULL 2009 -10-20 14:00:00.0000000 980010001 WEB110 990001000 C CSS 2009 -10-20 13:00:00.0000000 980010003 ITC110 990001000 C For next loops Figure 139 : Session table ordered by Session date Desc Looking at this result, Sharon thinks it could be made even better by adding a second sort on the tutor. She modifies the query to add the second sort. SELECT FROM Session ORDER BY SessionDate Key DESC , tutorkey The result set looks like this: SessionDateKey SessionTimeKey TutorKey CourseKey CourseStatus 2010 -02 -14 11:00:00.0000000 980010002 ENG211 NULL 2010 -02 -13 10:00:00.0000000 980010002 ITC255 NULL 2010 -02 -10 13:30:00.0000000 980010004 MAT107 NULL 2010 -02 -10 14:00:00.0000000 980010004 MAT107 NULL 2010 -02 -05 10:30:00.0000000 980010002 ITC255 C 2010 -01 -22 14:00:00.0000000 980010004 MAT107 NS 2010 -01 -20 11:00:00.0000000 980010004 ENG211 C 2010 -01 -15 09:30:00.0000000 980010002 ITC255 C 2009 -11 -20 10:30:00.0000000 980010001 ITC220 C 2009 -11 -10 14:00:00.0000000 980010001 WEB110 C 2009 -11 -10 13:00:00.0000000 980010004 MAT107 C 2009 -11 -05 10:00:00.0000000 980010001 ITC220 NS 2009 -10 -20 14:00:00.0000000 980010001 WEB110 C 2009 -10 -20 13:00:00.0000000 980010003 ITC110 C Figure 140 : Session ordered by Date and Tutor For this result, the primary sort is the Session date. It is in a descending order. The secondary sort is by tutorkey, and it is ordered in an ascending order. The tutorkeys “dfoster” and “glewis,” for instance, Hands ON Database 269 both have the same Session date, but they a re ordered alphabetically in ascending order (A to Z) for that date . Testing the Database Now Sharon is ready to start testing the database to see if supports the business rules that she and Terry had identified. She decides to keep it simple at first and concentrate on making sure that Terry can get the kinds of demographic information she needs. For each case in a notebook she writes down what test she is conducting, the SQL she uses, and the results. For her f irst query she will simply test for gender, and return all the male students: SELECT StudentLastName , StudentFirstName , StudentGender FROM Student WHERE StudentGender ='M' This returns the following results: StudentLastName StudentFirstName StudentGender Bradbury Ron M Carlos Juan M Nguyen Lu M Thomas Lawrence M Figure 141 : Male Students Things you should know The WHERE clause The WHERE keyword is used to set the criteria for filtering rows. (You filter columns by listing those you wish to see in the SELECT clause.) The basic syntax of a WHERE clause is WHERE [column] [=< > LIKE IN BETWEEN IS] [value] This probably looks confusing. Let’s look at some examples. Say you had a database with a n Inventory table that con tains data about equipment sold by a Sporting goods store. Hands ON Database 270 InventoryKey InventoryName InventoryUnit InventoryPrice InventoryQuantity InventoryDescription 1001 Tennis Balls 1 tube 2.3400 40 One tube contains 4 balls 1002 Basketball 1 ball 34.5900 20 NULL 1003 Baseball 1 ball 4.5000 100 NULL 1004 Baseball Bat 1 bat 18.7500 30 NULL 1005 Lawn Darts 1 box 25.8800 20 Box contains 2 hoops 6 darts 1006 T-Ball Kit I box 32.0000 15 Box contains tee, bat and ball 1007 T-Ball Tee 1 Tee 12.0000 18 Individual tee 1008 Bike Helmet 1 Helmet 12.9500 14 NULL Figure 142 : Inventory Table You only want to see the record for tennis balls: SELECT * FROM Inventory WHERE InventoryName ='Tennis Balls ' This would return only the data for “Tennis Balls” as shown: InventoryKey InventoryName InventoryUnit InventoryPrice InventoryQuantity InventoryDescription 1001 Tennis Balls 1 tube 2.3400 40 One tube contains 4 balls Figure 143 : Results for Tennis Balls When you are specifyi ng criteria in a WHERE clause, Character , Varchar, Nchar, NVarchar, Text, XML and DateTime values are enclosed in single quotes. The ANS= standard doesn’t distinguish between single and double quotes, but SQL Server does. Values must be quoted in single quotes. If you use double quotes you will receive an error. Here is the error generated by the query above with double quotes around “Tennis Balls.” Msg 207, Level 16, State 1, Line 2 Invalid column name ' Tennis Balls ' Number values ar e not quoted. Here is a query that returns all the Items from inventory that have a price of $12.95. SELECT ItemName , Item Price Hands ON Database 271 FROM Inventory WHERE Item Price =12.95 This returns: InventoryName InventoryPrice Bike Helmet 12.9500 Figure 144 : Results for 12.95 With numbers and dates you can also use the comparative values for greater then and less then. SELECT ItemName , Price FROM Inventory WHERE Price > 25 This returns: InventoryName InventoryPrice Basketball 34.5900 Lawn Darts 25.8800 T-Ball Kit 32.0000 Figure 145 : Results for >25 The LIKE keyword lets you search for patterns in char, nchar, varchar and nvarchar columns. You use it the wildcard character “%”. The “%” wildcard character searches for any number of characters to replace. For instance if you wanted to find every customer whose last name began with “S” you could write a query like this: SELECT Item Name , ItemPrice FROM Inventory WHERE Item Name LIKE ‘T%’ InventoryName InventoryPrice Tennis Balls 2.3400 T-Ball Kit 32.0000 Things to Think About LIKE is considered an “Expensive” operator. That means it takes a lot of processing and CPU time. Why do you think that would be the case? When do you think it would be appropriate to use the LIKE opera tor? When would it not be appropriate? Hands ON Database 272 T-Ball T ee 12.0000 Figure 146 : Results LIKE 'T%' You can use more than one “%” in an expression. For instance, if you wanted to return customer last names that had the character string “and” in them: SELECT ItemName , ItemPrice , ItemQuantity FROM Inventory WHERE InventoryName LIKE ‘% ball %’ This returns : ItemName ItemPrice ItemQuantity Tennis Balls 2.3400 40 Basketball 34.5900 20 Baseball 4.5000 100 Baseball Bat 18.7500 30 T-Ball Kit 32.0000 15 T-Ball Tee 12.0000 18 Figure 147 : Results for LIKE '%ball%' The BETWEEN keyword returns values between two stated ends . BETWEEN is inclusive of the ends . That means if you returned values BETWEEN 3 AND 10, the query would return 3, 4,5,6,7,8,9, and 10. You can get the same results by using >= and the <= operators: WHERE Number >=3 AND Number <=10. (We will discuss AND, OR and NOT in a moment.) BETWEEN is especially useful for returning a range of dates. SELECT tutorkey , courseKey , SessionDate , StudentKey FROM Session WHERE SessionDate BETWEEN '11/1/2008' AND '11/15/2008' This returns the following results from our Session table: Figure 148 : BETWEEN Results TutorKey CourseKey SessionDate StudentKey nanderson ITC110 2008 -11 -12 14:00:00.000 lpeterson nanderson ITC110 2008 -11 -12 15:00:00.000 scarter nanderson ITC110 2008 -11 -13 13:00:00.000 lpeterson sbrown ITC220 2008 -11 -13 14:00:00.000 scarter Hands ON Database 273 Next we will look at the keyword IS. IS is used instead of “= “ with the keyword NULL. A null is an unknown value. Since it is unknown, it can’t be equal to anything. It is often, however, useful to search for nulls. Say you wanted to get a li st of all the sessions that are not reserved by students. You can search for Sessions where the Studentkey IS NULL: SELECT tutorkey , courseKey , SessionDate , StudentKey FROM Session WHERE StudentKey IS NULL This results in : Figure 149 : IS NULL results TutorKey CourseKey SessionDate StudentKey dfoster ENG211 2009 -03 -02 10:00:00.000 NULL dfoster ENG211 2009 -03 -02 11:00:00.000 NULL glewis MAT107 2009 -03 -02 11:00:00.000 NULL AND, OR, NOT All of these different kinds of conditions can be combined by using the keywords, AND and OR. When two conditions are combined with the AND keyword both must be true to return a result set. If you were to have a condition, for instance, such as WHERE City = ‘Seattle’ AND City=’Portland’ , it would never return any results because both can’t be true at the same time. OR, on the other hand, returns results if either of the conditions are true. W:ERE City = ‘Seattle’ OR City=’Portland’ returns results for eit her Seattle or Portland. The NOT keyword allows you to negate a condition. For example if you wanted to select all the customers who were not in Seattle, you could write a query like: SELECT LastName , FirstName , Phone , City FROM Customer WHERE NOT City ='Seattle' Hands ON Database 274 Equally, if you wanted to find all those sessions that did have a student scheduled you could use the NOT with the IS NULL: SELECT tutorkey , courseKey , SessionDate Key , StudentKey FROM Session WHERE StudentKey IS NOT NULL This returns : tutorKey courseKey SessionDateKey StudentKey 980010003 ITC110 2009 -10 -20 990001000 980010001 WEB110 2009 -10 -20 990001000 980010004 MAT107 2009 -11 -10 990001004 980010001 WEB110 2009 -11 -10 990001000 980010001 ITC220 2009 -11 -20 990001002 980010002 ITC255 2010 -01 -15 990001000 980010004 ENG211 2010 -01 -20 990001003 980010004 MAT107 2010 -01 -22 990001005 980010002 ITC255 2010 -02 -05 990001000 Figure 150 : Results Not Null She decides to clean the results up a little. To do this she will use aliases for the column names and order the results by the last name: SELECT StudentLastName AS "Last Name" , StudentFirstName AS "First Name" , StudentGender AS "Gender" FROM Student WHERE StudentGender ='M' ORDER BY StudentLastName When she executes it the results now look like this: Last Name First Name Gender Bradbury Ron M Carlos Jaun M Hayden Patrick M Nguyen Lou M Thomas Lawrence M Hands ON Database 275 Returning all the males was a start, but what Terry would really need is aggregated data, data that is summarized and processed in various ways. For her first try she decides to get the count of all students over 25. She enters this query into the editor: SELECT COUNT (*) as "Total Over 25" FROM Student WHERE StudentAge > 25 =t uses the aggregate function “Count.” As its name suggests, count returns the count of values returned. In this case 5: Total over 25 5 Things You Should Know Functions SQL Server and most DBMSs include a variety of functions. Some functions operate on individual rows, one at a time. These are called Scalar functions. Other functions operate on sets of rows or whole tables of rows at a time. These are called Aggregate functions Every function has a similar syntax that consists of the function name and a set of parenthesis. In the parenthesis are listed any p arameters the function requires separated by commas. (parameter1, parameter2, …) Scalar functions — operate only on a single row Aggregate Functions — operate on sets of rows Hands ON Database 276 The function ROUND, for instance, which will round a number takes two parameters: the number to be rounded, which can be a numeric column or a literal number, a nd the number of decimal places to round at. SELECT ROUND (23.4567893 ,2) as Rounded This results in: 23.46 00000. Scalar Functions Scalar functions operate on the individual rows of a table. There are several dozen built in scalar functions in SQL Server. I n SQL Server Management Studio You can see lists of both scalar and aggregate functions if you look at the Programmability \Functions \System Functions for a database. This chapter uses only a small number of functions, mostly related to Dates. Below is a ta ble of those functions: Table 12: Scalar functions used in this Chapter Function Name Description GETDATE() Returns current date and time MONTH Returns the month as in integer (1 to 12) from a Date value YEAR Returns the Year as a four digit integer from a date value Aggregate Functions As mentioned, aggregate functions are functions that operate on seveal rows at a time. They are extremely useful for analysing data in tables. Below is a table of the most common aggregate functi ons. Table 13: Common Aggregate Functions Aggregate Function Description COUNT Counts the number of values : COUNT(*) counts all the rows.
 COUNT(columnName) counts all the values in the column but ignores nulls SUM Sums or totals numeric values: SUM (InStock) AVG Returns the mean average of a set of numeric values: AVG(Price). By default nulls are ignored. MAX Returns the highest value in a set of numeric or datetime values: MAX(price) MIN Returns the smallest value in a set o f numeric or datetime value: MIN(Price) Hands ON Database 277 DISTINCT With Aggregate Functions One of Terry’s reporting needs is to return unduplicated student counts. =t is possible to use the word DISTINCT with a function to do that. The COUNT function by itself will count all instances of a value. So, for instance, if we do a count of all studentKeys from Session with the following SQL we will get the total number of students who signed up for sessions, but each student will be counted as many times as the session they sig ned up for. SELECT COUNT (studentKey) AS [Total] FROM Session For this query the total is 9 . Running the query with the DISTINCT key word returns an unduplicated count. It only counts unique values. The following query returns 5. There are only 5 individual students who have signed up for sessions. SELECT COUNT (DISTINCT studentKey)AS [Unduplicated] FROM Session GROUP BY Because aggregate functions operate on several rows at a time, there is a conflict when you use column names and scalar functions that only operate on one row at a time . To resolve this conflict SQL has a GROUP BY clause. Any column or scalar function this is not a part of the aggregate function must be included in a GROUP BY clause . Suppose, for instance, Sharon wanted to count how many sessions eash Tutor had scheduled. She could write a query like the following: SELECT TutorKey , COUNT (SessionTimeKey) AS [Total Sessions] FROM Session Running this query would throw the following error: Msg 8120, Level 16, State 1, Line 1 Hands ON Database 278 Column 'Session.TutorKey' is invalid in the select list because it is not contained in either an aggregate function or the GROUP BY clause. The problem is that the query mixes scalar, single row values, with aggregate, multiple row values.
 TutorKey is returned f or each row, while COUNT(SessionTimeKey) returns a value generated by looking at all the row. To solve this TutorKey needs to be contained in a GROUP BY clause. Which means that the COUNT will be grouped by TutorKey. This actually returns the information S haron wants: TutorK ey Total Sessions 980010001 4 980010002 4 980010003 1 980010004 5 Figure 151 : Group by Results HAVING Another keyword associated with aggregate functions is the HAVING Keyword. HAVING is used for criteria that involve an aggregate function. Let’s say that Sharon only wants to see the Tutors that have less that 4 sessions scheduled. To do this she needs a HAVING clause: SELECT TutorKey , COUNT (SessionTimeKey) AS [Total Sessions] FROM Session GROUP BY TutorKey HAVING COUNT (SessionTimeKey)< 4 This returns only TutorKey Total Sessions 980010003 1 Figure 152 : Having Results Sharon writes a query to get the Average Age of Students: SELECT AVG (StudentAge)AS "Average Age" FROM Student Hands ON Database 279 Average Age 29 Just for good measure, she decides to get the maximum and minimum ages for the students: Select MAX (StudentAge) AS "Oldest" FROM Student Oldest 53 Select MIN (StudentAge) AS "Youngest" FROM Student Youngest 18 Now she ready to try something more sophisticated. Sharon knows that Terry needs a count of how many students are of each ethnicity. Sharon tries this statement: SELECT EthnicityKey , COUNT (EthnicityKey) AS "Total" FROM Student When she runs this query she gets an error message: Column 'Session.TutorKey' is invalid in the select list because it is not contained in either an aggregate function or the GROUP BY clause. This reminds her that she must add a GROUP BY clause whenever she has a column in the SELECT clause that is not a part of the aggregate function. She rewrites the function to include the GROUP BY and gets these results: SELECT EthnicityKey , COUNT (Ethnici tyKey) AS "Total" FROM Student GROUP BY EthnicityKey EthnicityKey Total Hands ON Database 280 NULL 0 AfrAmeri 1 Asian 2 Caucasian 4 Hispanic 2 Figure 153 : Ethnicty resuls GROUP BY It is time to look at some of the other business rules. The first rule was just a statement of the nature of tutors. A tutor can be a student but is not necessarily one The real issue there was not to assume that a tutor had a studentkey. Sharon had designed the tables so r tutors to have their own key . She lo oked at the second rule: Tutors cannot work for more than 60 hours a month To really enforce this, Sharon would need to create a t rigge ror stored procedure . This is a more complicated matter and she decides to leave it until l ater . She makes a note so sh e doesn’t forget it. She can , though , make sure that the information needed for this rule can be returned from the database. First she will get all the sessions for a particular tutor. She looks up the table and chooses Ginger Lewis. She writes this SQL s tatement: SELECT TutorKey , CourseKey , SessionDateKey , SessionTimeKey , StudentKey , SessionStatus FROM Session WHERE Tutorkey ='980010004' Here are her results: TutorKey CourseKey SessionDateKey SessionTimeKey StudentKEy SessionStatus 980010004 MAT107 2009 -11 -10 13:00:00.0000000 990001004 C 980010004 ENG211 2010 -01 -20 11:00:00.0000000 990001003 C 980010004 MAT107 2010 -01 -22 14:00:00.0000000 990001005 NS 980010004 MAT107 2010 -02 -10 13:30:00.0000000 NULL NULL Hands ON Database 281 980010004 MAT107 2010 -02 -10 14:00:00.0000000 NULL NULL Figure 154 : GInger Lewis Sessions Sharon has returned all the sessions for a tutor, but she still needs to figure out how many hours that student has worked in a month. Sharon knows that there are some built in functions that can help her extract different parts from the datetime columns. She decides to click help. She selects Search and in the Search text box types “Date functions.” The first selection that comes up is “Date and Time Functions (Transact SQL)”. “Transact SQL,” she knows, is Microsoft SQL Servers specific flavor of SQL. She clicks on this to open the help file. From the table of functions she clicks on the Month function and looks at the example: The following example returns the number of the month from the date 03/12/1998. SELECT "Month Number" = MONTH('03/12/1998') GO Here is the result set. Month Number ------------ 3 She also looks up the YEAR function, then tries the following query: SELECT TutorKey , CourseKey , Month (SessionDate Key) AS "Month" , Year (SessionDate Key) AS "Year" , Session TimeKey , StudentKey , SessionStatus FROM Session WHERE Tutorkey ='980010004' Transact SQL — Microsoft SQL Server’s brand of SQL Hands ON Database 282 This returns the following results: TutorKey CourseKey Month Year SessionTimeKey StudentKey SessionStatus 980010004 MAT107 11 2009 13:00:00.0000000 990001004 C 980010004 ENG211 1 2010 11:00:00.0000000 990001003 C 980010004 MAT107 1 2010 14:00:00.0000000 990001005 NS 980010004 MAT107 2 2010 13:30:00.0000000 NULL NULL 980010004 MAT107 2 2010 14:00:00.0000000 NULL NULL Figure 155 : Month Year Results Now that Sharon has a list of all the sessions for a tutor, she needs to get the count of how many hours they have tutored in a month. She decides to try the COUNT function. SELECT Tutorkey , MONTH (SessionDate Key) AS [Month] , YEAR (SessionDate Key) AS [Year] , COUNT (Session TimeKey) AS [Total] FROM Session GROUP BY TutorKey , MONTH (SessionDate Key), YEAR (SessionDate Key) ORDER BY YEAR (SessionDate Key), MONTH (SessionDate Key) This returns the following results: TutorKey Month Year Total 980010001 10 2009 1 980010003 10 2009 1 980010001 11 2009 3 980010004 11 2009 1 980010002 1 2010 1 980010004 1 2010 2 980010002 2 2010 3 980010004 2 2010 2 Figure 156 : Session Count Results This returns the count of sessions that each tutor had per month, and Terry could use it to calculate the number of hours, but Sharon is sure she can improve it. Each session is 30 minutes in length. Sharon knows she can multiply the number of sessions by 30 to get the number of minutes. Then she can divide the total minutes to get the number of hours. She will also alias the calculated column. After some work she produces the following query: Hands ON Database 283 SELECT Tutorke y, MONTH (SessionDate Key) AS [Month] , YEAR (SessionDate Key) AS [Year] , ((COUNT (Session TimeKey))* 30.0)/ 60.0 AS [Hours] FROM Session GROUP BY TutorKey , MONTH (SessionDate Key), YEAR (SessionDate Key) ORDER BY YEAR (SessionDate Key), MONTH (SessionDate Key) TutorKey Month Year Hours 980010001 10 2009 0.500000 980010003 10 2009 0.500000 980010001 11 2009 1.500000 980010004 11 2009 0.500000 980010002 1 2010 0.500000 980010004 1 2010 1.000000 980010002 2 2010 1.500000 980010004 2 2010 1.000000 Figure 157 : hours grouped by tutor, month and year As is, the query results show the number of hours for each tutor. It would be better if she could select a particular month and year. Sharon tries putting a WHERE clause after the G ROUP BY, but that generates an error. Finally, she puts the WHERE clause after the FROM Clause and the query runs successfully. SELECT Tutorkey , MONTH (SessionDate Key) AS [Month] , YEAR (SessionDateKey) AS [Year] , ((COUNT (Session TimeKey))* 30.0)/ 60.0 AS [Hours] FROM Session WHERE MONTH (SessionDateKey)= 2 AND YEAR (SessionDateKey)= 20 10 GROUP BY TutorKey , MONTH (SessionDate Key), YEAR (SessionDate Key) ORDER BY YEAR (SessionDate Key), MONTH (SessionDate Key) TutorKey Month Year Hours 980010002 2 2010 1.500000 980010004 2 2010 1.000000 Figure 158 : Tutor Hours for February Sharon decides to add one more thing to the query. It would be useful if Terry had a query that could flag anyone in a given time period who was scheduled for more than 60 hours. This will require a HAVING clause. SELECT Tutorkey , Hands ON Database 284 MONTH (SessionDateKe y) AS [Month] , YEAR (SessionDateKey) AS [Year] , ((COUNT (Session TimeKey))* 30.0)/ 60.0 as [Hours] FROM Session WHERE MONTH (SessionDateKey)= 2 AND YEAR (SessionDateKey)= 20 10 GROUP BY TutorKey , MONTH (SessionDateKey), YEAR (SessionDateKey) HAVING (((COUNT (Session TimeKey))* 30.0)/ 60.0) > 60 ORDER BY YEAR (SessionDateKey), MONTH (SessionDateKey) In the current database this will return nothing, because no one has worked for over 60 hours in the monthly period. But it would serve to check to make sure no tutor is exceding his or her hours. Joins Sharon knows these queries would be more readable if they contained the names of the tutors rather than just the tutor key. To do this she would need to use joins. She starts with a simple join that combines the tutor ta ble with the Session table. Here is her SQL and results: SELECT TutorLastName , TutorFirstName , SessionDate Key , Session Time Key , StudentKey SessionStatus FROM Tutor INNER JOIN Session ON Tutor .TutorKey = Session .TutorKey TutorLastName TutorFIrstname SessionDateKey SessionTimeKey StudentKey Anderson Nathan 2009 -10 -20 13:00:00.0000000 990001000 Brown Susan 2009 -10 -20 14:00:00.0000000 990001000 Brown Susan 2009 -11 -05 10:00:00.0000000 NULL Lewis Ginger 2009 -11 -10 13:00:00.0000000 990001004 Brown Susan 2009 -11 -10 14:00:00.0000000 990001000 Brown Susan 2009 -11 -20 10:30:00.0000000 990001002 Foster Daniel 2010 -01 -15 09:30:00.0000000 990001000 Lewis Ginger 2010 -01 -20 11:00:00.0000000 990001003 Lewis Ginger 2010 -01 -22 14:00:00.0000000 990001005 Foster Daniel 2010 -02 -05 10:30:00.0000000 990001000 Lewis Ginger 2010 -02 -10 13:30:00.0000000 NULL Lewis Ginger 2010 -02 -10 14:00:00.0000000 NULL Foster Daniel 2010 -02 -13 10:00:00.0000000 NULL Foster Daniel 2010 -02 -14 11:00:00.0000000 NULL Figure 159 : Join Results Hands ON Database 285 Things You Should Know Joins The process of normalization breaks tables into smaller more focused tables. This makes for more effective database processing, but it separates things that seem to belong together. Jo ins allow the user to reunite or “join” elements that have been split into a single result set. INNER JOIN An inner join returns the selected columns for all the rows in chosen tables that have a related row in the joined table. What this means is that the join returns all the Tutors that have sessions in the Session table. =f there are any tutors in the Tutor table that don’t have sessions, they will not be included in the results. Conversely, if there are any sessions that don’t have an assigned tutor, th ey also will not be returned. Take a look at Sharon’s query to get an overview of how an inner join works. All the columns are listed in the SELECT clause in the order you want to see them returned regardless of what table they may come from. SELECT TutorLastName , TutorFirstName , SessionDate Key , Session TimeKey , StudentKey SessionStatus One of the tables —it doesn’t really matter which one, though usually it’s the table containing the first columns —is used in the FROM clause. Hands ON Database 286 FROM Tutor Next, the key words INNER JOIN are used to add the second table. INNER JOIN Session JOIN can be used by itself without the modifier INNER, since the default type of JOIN is an INNER JOIN. But it is better to use the INNER for clarity. Finally, an ON clause defines how the tables relate. ON Tutor .TutorKey = Session .TutorKey It is necessary to show the relation even though you have defined the relational constraints in the database management system. Notice also, the dot notation. The column TutorKey, because it is both a primary key and a foreign key exists in both tables. I n order to clarify which one belongs to which table we use the following notation to clarify which column we are referring to: . This is called a “qualified” name. A fully qualified name includes: ..< SCHEMANAME>.. The schema name is the name of the owner of the object. In most cases in SQL Server the schema is “dbo” which is short for “Database Owner.” =t is possible to assign tables and other database objects to different schem as as owners of the object . This will be covered in the next chapter on Security. Any column, even in the SELECT column that is ambiguous, that exits in more than one table , must be disambiguated or clarified by including its table name. To make this a li ttle less tedious you can alias the table names and use the alias instead of the table names. Qualified Name — a name that includes a chain of ownership separated by dot notation Hands ON Database 287 SELECT t.TutorKey TutorLastName , TutorFirstName , SessionDate Key , Session Time Key , StudentKey SessionStatus FROM Tutor t INNER JOIN Session s ON t.TutorKey = s.TutorKey Notice that the alias is used in the SELECT clause as well, even though you don’t declare the aliases until the FROM and INNER JOIN clauses. After the ON Clause you can, of course, add a WHERE clause and ORDER BY as needed. Equi Joins An equi join is an older form of join that doesn’t use the =NNER HO=N syntax. =n some older versions of Database Management systems such as ORACLE (versions b efore 9i) , equi joins were the only way to join tables. In an Equi Join you list all the columns in the SELECT just as in the INNER JOIN, but in the FROM, instead of just listing one table, you list them all, separated by commas. There is no ON clause, but you still define the relationships with the = sign (thus the name equijoin) in the W:ERE clause. The example below is equivalent to Sharon’s =NNER HO=N except for the addition of a search criterion in the WHERE Clause to show how that would work with the definition of the relationship. SELECT t.TutorKey , TutorLastName , TutorFirstName , SessionDate Key , Session Time Key , StudentKey FROM Tutor t , Session s WHERE t.TutorKey =s.TutorKey AND TutorLastName ='Brown ' Equi Joins — a join using the = sign to specify relations, an older alternative to the INNER JOIN syntax Hands ON Database 288 The equi join syntax may seem simpler to some people, but the INNER JOIN syntax shou ld be used where possible. The INNER JOIN is clearer about what is going on in the query, whereas the equi join syntax mixes the join information with query criteria. Also the Inner join syntax protects you from a common error in the equijoin syntax. In t he equijoin, when you are joining multiple tables, it is easy to forget to specify a relationship. A query with such a mistake does not throw an error, instead it produces a CROSS JOIN with the result set before it. A CROSS JOIN (sometimes called a Cartes ian JOIN) combines each row in the result set or first table with each row in the second table. You can end up with thousands of unexpected rows in your final query result.
 The Inner join syntax makes this particular error virtually impossible. Joins with Several Tables Both INNER JOINS and equi Joins can be uses to join more than two tables. Below is an example of both forms which brings together the Student table, the Request table, and the Course table. SELECT s.StudentKey , StudentLastName , StudentFirstName , c.CourseKey , CourseName , RequestDate , RequestStatus FROM Student s INNER JOIN Request r ON s.StudentKey =r.StudentKey INNER JOIN Course c ON c.CourseKey =r.CourseKey WHERE RequestStatus ='Active ' SELECT s.StudentKey , StudentLastName , Cross Join — A join in which each row in one table is matched to every row in a second table Things to Think About Why do you think Cross Joins are allowed as a legitimate join? What uses can you see for such joins? Hands ON Database 289 StudentFirstName , c.CourseKey , CourseName , RequestDate , RequestStatus FROM , Student s , Course c , Request r WHERE s.StudentKey=r.StudentKey AND c.CourseKey=r.CourseKey AND RequestStatus='Open' In both cases the result is the same: StudentKey StudentLastName StudentFirstName CouseKey CourseName RequestDate RequestStatus 009001010 Min Ly ITC226 DatabaseAdministration 2010 -01-05 Active Figure 160 : Multiple Join Results Notice, that in the inner join syntax you just add another INNER JOIN and ON Clauses for each table. In the equi Join you list all the tables in the FROM clause and add an AND clause for each additional relationship. Outer Joins An INNER JOIN returns only related rows from the joined tables. That means if there w ere a tutor in the tutoring table who had not entered any tutoring session, that tutor would not be returned by an INNER JOIN query with the Session table. Only those tutors who had a related row in the Session table would be returned. An Outer join return s all the rows in one table and only the related rows in the second table. There are two kinds of outer joins, a LEFT OUTER JOIN and a RIGHT OUTER JOIN. The only difference between the two is which table in the join you want to return all the records from. LEFT is the first table listed and RIGHT is the second table. To find any tutors that were without sessions you could write a query like this: SELECT t.TutorKey , TutorLastName , SessionDateKey FROM Tutor t LEFT OUTER JOIN Session s ON t.TutorKey =s.TutorKey WHERE SessionDateKey IS Null This results in: Hands ON Database 290 TutorKey TutorLastName SessionDateKey 980010000 Roberts NULL Figure 161 : Outer Join Results “Roberts” exists in the Tutor table, but has no sessions recorded in the Session table. Sharon decides to expand her query to include not only the tutor’s name, but also the student’s name and the course name. Now her query looks like this: SELECT TutorLastName , TutorFirstName , c.CourseKey , CourseName , SessionDate Key , Session Time Key , StudentLastName , StudentFirstName , SessionStatus FROM Tutor t INNER JOIN Session s ON t.TutorKey = s.TutorKey INNER JOIN Course c ON c.CourseKey = s.CourseKey INNER JOIN Student st ON st .StudentKey =s.StudentKey The results of this query look like this: TutorLastName TutorFirstName CourseKey CourseName Session DateKey SessionTimeKey Student LastName Student FirstName Session Status Anderson Nathan ITC110 Beginning Programming 2009 - 10-20 13:00:00.0000000 Peterson Laura C Brown Susan WEB110 Beginning Web Page Design 2009 - 10-20 14:00:00.0000000 Peterson Laura C Lewis Ginger MAT107 Applied Math 2009 - 11-10 13:00:00.0000000 Nguyen Lu C Brown Susan WEB110 Beginning Web Page Design 2009 - 11-10 14:00:00.0000000 Peterson Laura C Brown Susan ITC220 Introduction to Database 2009 - 11-20 10:30:00.0000000 Carter Shannon C Foster Daniel ITC255 Systems Analysis 2010 - 01-15 09:30:00.0000000 Peterson Laura C Lewis Ginger ENG211 Technical Writing 2010 - 01-20 11:00:00.0000000 Martinez Sandy C Lewis Ginger MAT107 Applied Math 2010 - 01-22 14:00:00.0000000 Zukof Mark NS Foster Daniel ITC255 Systems Analysis 2010 - 02-05 10:30:00.0000000 Peterson Laura C Figure 162 : Multiple Join Results Hands ON Database 291 Inserts, Updates and Deletes Sharon looks back at her list of business rules. She looks particularly at the first three she has listed Students must register for tutoring (a new rule with the da tabase) Students must enter current courses Students are encouraged but not required to enter demographic data Ultimately, the students will enter this data through a form of some kind, but it will still require insert statements underneath. Referential in tegrity requires that data be entered into the Student table before data can be entered into the StudentCourse table. It also requires that the course exists in the course table prior to its being entered in the StudentCourse table. The same holds true of the EthnicityKey. Sharon writes the Student insert statement first. INSERT INTO Student (StudentKey , StudentLastName , StudentFirstName , StudentEmail , StudentPhone , StudentGender , StudentAge , StudentCitizen , StudentWorkerRetraining , EthnicityKey) VALUES ('99001008 ', 'Steve' , 'Norton' , '' , '2065554002' , 'M' , '32' , 1, 0, 'Caucasion') Things You Should Know INSERT Statements The basic syntax for an INSERT Statement is Hands ON Database 292 INSERT INTO (, , . . .) VALUES(< value1>, , …) You do not have to list all the column names, but you do have to enter all the required columns. The values much match the columns in sequence and in data type. if you list a column that is not required and you don’t want to put data in it you can use the NULL keyword. In general, you must have a separate INSERT statement for each row you wish to insert. In a form the same insert statement can be used every time by substituting variable for the values in the list, and there are ways to bulk inserts or to insert values with from another table with a SELECT statement instead of a value list, but these are topics for more advanced SQL. When she runs the query, Sharon receives the following result which indicates that the INSERT Statement w as successful. (1 row(s) affected) Next Sharon decides she should test whether a second student who is less willing to enter demographic information. INSERT INTO Student (StudentKey , StudentLastName , StudentFirstName , StudentEmail , StudentPhone , StudentGender , StudentAge , StudentCitizen , StudentWorkerRetraining , EthnicityKey) VALUES ('99001009 ', 'Jill' , 'Miller' , '' , '2065551103' , 'F' , NULL, NULL, 0, Hands ON Database 293 NULL) This also inserts correctly. Now it is time to test whether each student can enter what courses they are enrolled in. First she trys for Steve Norton. She creates a separate INSERT statement for each course Norton is taking. INSERT INTO StudentCourse (StudentKey ,CourseKey ,Quarter) Values ('99001008 ','ITC220' ,'Spring09') INSERT INTO StudentCourse (StudentKey ,CourseKey ,Quarter) Values ('99001008 ','ITC110' ,'Spring09') INSERT INTO StudentCourse (StudentKey ,CourseKey ,Quarter) Values ('99001008 ','ENG211' ,'Spring09') She does the same for Jill Miller: INSERT INTO StudentCourse (StudentKey ,CourseKey ,Quarter) Values ('99001009 ','ITC220' ,'Spring09') INSERT INTO StudentCourse (StudentKey ,CourseKey ,Quarter) Values ('99001009 ','MAT107' ,'Spring09') Sharon looks at a the next business rule: Students sign up for sessions This involves a different action than entering the student information. The tutor will enter the session data and the Student will UPDATE it to add their studentkey information to the row. First Sharon inserts a new Session. INSERT INTO Sess ion (TutorKey , CourseKey , SessionDate Key , Session TimeKey , StudentKey , SessionStatus) VALUES ('980010004 ', 'ITC220' , '2/10/20 10 ', '10:00 AM' , NULL, NULL) Next, she creates the SQL Update statement that would let a student sign up for this session. UPDATE Session Hands ON Database 294 SET StudentKey = ' 980001009 ' WHERE TutorKey ='980010004 ' AND CourseKey ='ITC220' AND SessionDate Key ='2/10/20 10 ' AND Session TimeK ey='10:00 ' Things you Should Know Updates and Deletes Updates change existing data and deletes remove it. Both can act on one or on many rows at a time. The basic syntax of an UPDATE statement is UPDATE SET = WHERE = You can update more than one column at a time by listing the columns you wish to update in th e SET clause with their new values. Each value pair is separated from the others by commas. UPDATE Student SET StudentPhone ='2965557000' , StudentEmail = '' WHERE StudentKey ='980001009 ' The DELETE statement syntax is DELETE FROM < TableName> WHERE = For instance if the tutor Susan Brown needed to delete all her sessions for a day she could use the following SQL: DELETE FROM Session WHERE SessionDate Key = '4/10/2009' AND TutorKey ='980010001 ' Hands ON Database 295 Things to Watch Out For If you use a UPDATE o r DELETE without a WHERE clause , or if the W:ERE Clause isn’t specific enough you can change or DELETE all the rows in a table. For instance the UPDATE Statement UPDATE Session SET StudentKey = '99001008 ' would set every Session in the entire table to have the StudentKey “snorton.” Worse , there is no easy undo. Once an UPDATE is committed, the only way to undo it would be to restore the tables from backup files and the logs. This is a tricky task and usually requires the d atabase be offline while the files are restored. The same danger holds for the DELETE command. DELETE FROM Session This DELETE st atement without a WHERE clause Will delete every row in the Session table. Sometimes referential integrity can save you from th is mistake, but in a table like Session that is on the child side of all of its relationships, the command will empty the table Creating a Trigger Now Sharon feels ready to try a trigger. She wants to see if she can enforce the rule that no tutor should work more than 60 hours in a month. Sharon has done one or two triggers before, but she is very uncertain about where to start. She decides to look up Triggers in SQL Server’s :elp files. Things You Should Know Triggers Triggers are scripts of SQL code tha t are triggered by an event. The most common events are on INSERT, UPDATE or DELETE. These triggers are specific to a given table. A trigger for INSERT into the Student table, for instance, will fire every time that a INSERT into that table occurs. Trigger s can respond to more Hands ON Database 296 than one event at a time. You could, for instance have a trigger that responds to both the UPDATE and DELETE events. Triggers are used to enforce business rules that can’t be enforced by normal database constraints. In the tutor database there is a rule that no tutor can work more than 60 hours in a month. This is impossible to enforce just by referential integrity and constraints. But it can be enforced by a trigger. The rule that a student must be enrolled in a class to sign up for tutoring in that subject would be another candidate for a trigger. SQL Server supports three kinds of triggers on tables. FOR and AFTER triggers let the INSERT, UPDATE or DELETE occur and then run their SQL. INSTEAD OF Triggers intercept the event and execute their code instead of the INSERT, UPDATE, or DELETE. The basic syntax for a trigger is: CREATE TRIGGER ON [FOR, AFTER, INSTEAD OF] [INSERT, UPDATE, DELETE AS {SQL Code} Sharon decides to use an INSTEAD OF TRIGGER on IN SERT. She is not going to let the tutor enter a session if it brings the total hours to more than 60. Sharon knows it is important to list out the logical steps before trying to actually write the trigger. =t is easy to get confused if you don’t have a cle ar recipe to follow. She lists these steps: 1. Get the date from the INSERTED table 2. Extract the month 3. Create a variable for the total hours 4. assign to total the Sum of each session for that month (assuming 30 minutes each) 5. Check to see if the sum > 60 6. if it is output a message 7. Otherwise complete the insert into the Session table Hands ON Database 297 Things You Should Know INSERTED and DELETED Tables Whenever you insert a record SQL Server creates an INSERTED table in the Temp database. The table only exists for the duration of the transaction, but within a trigger you can use this table to access the data that was inserted. Updates and deletes are stored in a DELETED table. First Sharon defined the trigger and the internal variables she was going to use. CREATE TRIGGER tr_SessionHou rs ON [Session] INSTEAD OF INSERT AS DECLARE @month INT DECLARE @Year INT DECLARE @tutorID NCHAR (10) DECLARE @total FLOAT DECLARE @Maximum INT The DECLARE keyword is used to declare internal variables. All variables in SQL Server must start with the “@” symbol. Next she uses the SET keyword to assign a value to the @Maximum variable. The sessions are in minutes, so she multiplies 60 hours by 60 m inutes per hour to get 3600. SET @Maximum = 360 0 Next she uses SELECT statement to assign values from the INSERTED TABLE to the variables @month and @tutorID. SELECT @month =month (SessionDateKey) FROM Inserted SELECT @Year =Year (SessionDateKey) FROM Inserted SELECT @tutorID =TutorKey FROM Inserted Now that she has these values, Sharon writes the equation to test the number of total hours. She counts the sessions and multiplies by 30 minutes, then she adds 30 for the session being inserted. In the WHERE clause she makes sure that the count is only for the month, year and tutor in question. SELECT @Total =(Count (*) * 30) + 30 FROM Session WHERE TutorKey =@tutorID AND Month (SessionDateKey)= @Month AND YEar (SessionDateKey)= @Year Hands ON Database 298 Finally, she tests the @total to see if it is less than @Maximum. If it is not she performs the insert that the trigger aborted. She uses a SELECT to fill in the values for the INSERT IF @total <= @Maximum BEGIN INSERT INTO Session (SessionDateKey , SessionTimeKey , TutorKey , CourseKey) (SELECT SessionDateKey , SessionTimeKey , TutorKey , CourseKey FROM Inserted) END ELSE BEGIN Print 'Too many hours for this month' END Here is the whole trigger: CREATE TRIGGER tr_SessionHours ON [Session] INSTEAD OF INSERT AS DECLARE @month INT DECLARE @Year INT DECLARE @tutorID NCHAR (10) DECLARE @total FLOAT DECLARE @Maximum INT SET @Maximum = 3600 SELECT @month =month (SessionDateKey) FROM Inserted SELECT @Year =Year (SessionDateKey) FROM Inserted SELECT @tutorID =TutorKey FROM Inserted SELECT @Total =(Count (*) * 30) + 30 FROM Session WHERE TutorKey =@tutorID AND Month (SessionDateKey)= @Month AND YEar (SessionDateKey)= @Year IF @total <= @Maximum BEGIN INSERT INTO Session (SessionDateKey , SessionTimeKey , TutorKey , CourseKey) (SELECT SessionDateKey , SessionTimeKey , TutorKey , CourseKey FROM Inserted) END ELSE BEGIN Print 'Too many hours for this month' END To test this Sharon must insert enough session data to get one of the tutors up to 3600 minutes, then add one more session. She does this and sees the message in the query window. Hands ON Database 299 Documentation Testing a database is critical to its success. You should thoroughly test every database before committing real data to it. And, as with everything else, it is essential to document your testing. Before you begin you should develop a testing plan. The plan should consist of each business rule or requirement you need to test. It should explain how you intend to test it and what the expected outcome should be. Next you should conduct each test and record it s results. If the result of the test is different than the expected result, you should determine where the error lies, either in the test or in the database. After correcting the error, you should run the test again to make sure the results conform to expe ctations. Here is a fragment of the testing plan for the TutorManagement database: Table 14: Testing plan and tests Rule to Test Means of testing Expected Result Result Return all students by Gender SELECT StudentLastName , StudentFirstName , StudentGender FROM Student WHERE StudentGender ='M' Return all male students Returned all male students Return unduplicated count of students from tutoring sessions SELECT Count (StudentID) FROM Session SELECT Count(DISTINCT StudentID) FROM Session Return unduplicated students from session Return s duplicated students Returns unduplicated student Count Return hours for student per month SELECT Tutorkey , MONTH (SessionDateKey) AS [Month] , YEAR (SessionDateKey) AS [Year] , ((COUNT (SessionTimeKey))* 30.0)/ 60.0 AS [Hours] FROM Session GROUP BY TutorKey , MONTH (SessionDateKey), YEAR (SessionDateKey) ORDER BY YEAR (SessionDateKey), MONTH (SessionDateKey) Hours grouped by student and month Returns hours grouped by student and month Hands ON Database 300 What W e H ave Done We have looked at business requirements using SQL We have selected data from the table using various criteria We have joined tables in the database for queries We have performed an outer join We have inserted data We have updated data SQL Key W ords Below is a table of the SQL terms used in this chapter. The descriptions do not contain all the uses of the term in SQL, only the ones relevant to the examples presented. Table 15: SQL Key Words Key Word Description AND Boolean argument used in SQL criteria for the result to be counted both conditions must be true AS Prefaces an alias for a column BETWEEN Used in criteria with AND DELETE Removes a row or rows from a database table DESC Reverses the order of a Sort o n a specific column in an ORDER BY Clause DISTINCT Returns only unique rows when used with SELECT. When used with an aggregate function, applies function only to unique values FROM Precedes the table name in a SELECT clause GROUP BY Groups rows in a query that contain one or more aggregate functions by columns not contained in those functions HAVING Used for query criteria that contain aggregate functions INNER JOIN Joins two tables returning only matching records INSERT Used to add rows to a table INTO Precedes the table name in an INSERT statement IS NULL Used in a query criteria to find NULL values (rather than = NULL) LIKE Used in query criteria with wildcards % _ to search for patterns in character based columns NOT Boolean argument used to exclude an option ON Used with INNER JOIN, introduces the clause that specifies how two tables are related Hands ON Database 301 OR Boolean argument used in criteria to specify an alternative value. Only one side of the OR clause must be true for the expression to be true ORDER BY Sorts a result set by a value or a set of values. When there is more than one sort criteria listed, the primary sort is on the leftmost value, the secondary sort on the next value, etc. OUTER LEFT JOIN A join that returns all the rows in the first table listed (left) and only matching records in the second (right) table. Good for finding unmatched data such as a tutor that has no tutoring sessions or a customer that has no purchases SELECT The first word of all queries that return data from the database SET In an UPDATE statement used to set the initial value to be modified, additional values just have the column name = new value and are separated by commas UPDATE First word of a command to modify existing data in a table VALUES In an INSERT s tatement this word prefaces the list of values to insert into the table WHERE In an SELECT statement introduces the criteria by which to select which rows to return Things to Look Up 1. Look up ANSI and ISO, Explain briefly what each is and does. 2. How many ANSI standards have been set for SQL? 3. What is the most recent ANSI Standard and what does it add to the previous SQL Standards 4. Look up a good online tutorial for SQL. What is the URL Vocabulary Match the term with the definition. 1. Aggregate Function 2. Alias 3. Cross Join 4. DDL 5. Declarative Language 6. DML Hands ON Database 302 7. Equi Joins 8. Procedural Language 9. Qualified Name 10. Scalar Function 11. SQL 12. Transact SQL a) Data Manipulation Language b) A function that operates on a single row at a time c) A substitute name for a column or table d) Programming langua ge that defines how to accomplish a task e) A join that uses the where clause and the equal sign to specify relationships f) The language of RDBMS g) Data Development Language h) A function that operates on multiple rows at a time i) A database name that shows a hierarchy of ownership with dot notation j) Microsoft SQL Server’s brand of SQL k) A programming language in which a programmer defines what to do not how l) A join in which each row of the first table is joined with every row in a second table Practices Use the Pizza Database created in the last Chapter’s Practices and write SQL to answer these questions: 1. List all Last names, phone numbers and zip of the customers Hands ON Database 303 2. List only those from Zip code 98002 3. List all the customers that have no first Address entered in th e database 4. List all the products that are priced higher than ten dollars 5. List all the products priced between 5 and 7 dollars 6. List all the customers whose last name starts with L 7. What is the Average price of a product 8. What is the highest price of a product 9. What is the total due for order 1003 10. Join the product and the OrderD etail table so that the result contains the product name, product unit size and product unit price as well the charged price. Do it for order 1000 11. List all the order and order details for each order made by the customer with the phone number 2065556623 12. Change the price of breadsticks to 3.00 13. Process a pizza order for a new customer (this will involve 3 insert statements) Scenarios Now that the basic database is in place, the Wild Wood Apartments managers are eager to see the database in action and see if it meets all their needs and requirements. It is time to look at the business rules and test them with some SQL. Look at the business rules you developed previously and design some SQL queries to test them . Documentation : Set up a test plan. List the rule, the SQL you wrote and the results. Also note whether the database passes or fails the test. Your queries should include : Hands ON Database 304 Two or three simple selects with various WHERE Criteria. T wo or three queries using aggregate functions. At least two queries that use joins. Two or three insert statements One or two updates and/or a delete =t is time to test Vince’s database to see if it truly meets his needs. . =t is time to look back at t he business rules and test them with some SQL. Look at the business rules you developed previously and design some SQL queries to test them. Documentation : Set up a test plan. List the rule, the SQL you wrote and the results. Also note whether the databas e passes or fails the test. Your queries should include: Two or three simple selects with various WHERE Criteria. T wo or three queries using aggregate functions. At least two queries that use joins. Two or three insert statements One or two updates and /or a delete Hands ON Database 305 The college is feeling pressure to get the new system in place. There could be an inspection of their IT services any time now, and they want to be ready. . It is time to look at the business rules and test them with some SQL. Documentatio n: Set up a test plan. Look at the business rules you developed previously and design some SQL queries to test them. List the rule, the SQL you wrote and the results. Also note whether the database passes or fails the test. Your queries should include: Two or three simple selects with various WHERE Criteria. T wo or three queries using aggregate functions. At least two queries that use joins. Two or three insert statements One or two updates and/or a delete The research program is almost ready to begin. Westlake is in the process of interviewing potential patients and doctors. It is important that the database be ready soon. It is also important that it d oes what it is supposed to do. It is time to look at the business rules and test them with som e SQL. Look at the business rules you developed previously and design some SQL queries to test them. Documentation : Set up a test plan. List the rule, the SQL you wrote and the results. Also note whether the database passes or fails the test. Your querie s should include: Two or three simple selects with various WHERE Criteria. Hands ON Database 306 T wo or three queries using aggregate functions. At least two queries that use joins. Two or three insert statements One or two updates and/or a delete Suggestion for Scenarios Review your business rules. Many are probably simple to test, requiring only select statements. Others may be harder. Try the simple ones first. You may also find that you need to adjust your sample data. It may be necessary to insert some data that shows a violation of a rule, or you may need to insert data in order to compare different dates or times. Most SQL mistakes are syn tax errors. Missing commas or extra comma s are common suspects. The error messages in the Query analyzer do not always pin point the exact error. If you double click the error message it will place your cursor in the vicinity of the error. Look all around the region. A missing comma above or a misspelled word may be causing an error later in the code. Another common error with joins is the ambiguous column. This usually involves a key column that occurs in other tables as a foreign key. Since it occurs in more than one table, SQL Server cannot determine which table it is from. These columns should always be qualified with the table name or table alias. Hands ON Database 307 Chapter Eight: Is it Secure? In this chapter Sharon looks at the security needs of the database. It is important to give everyone the access that they require to do the things they need to do. But it is also important to protect the database objects and data from either accidental or intentional damage. Sharon discovers that security is a complex and requires careful planning. Outcomes Analyze security needs and restrictions for users of the database Analyze threats to database integrity Understand the co ncepts of authentication and authorization Create logins and users Create roles The Issue Sharon has set up a meeting with Terry to show her the queries she has written and to discuss the next steps in the process. Terry is impressed but a little worried. “:ow will tutors and students access the database?” “We will create an application, either with windows or on the web that they can use to access the data.
 They won’t have direct access to the database, of course.” “Yes = know that, and = have talked with several people and we have agreed that we would prefer a web application. It would be nice if students could register for sessions from anywhere. What I really mean Hands ON Database 308 though is how do you differentiate between a tutor and student? How do you keep a student f rom acting as a tutor, if you know what = mean?” Sharon thinks for a minute. “= do know what you mean. They would have different logins, = think, with different permissions. And , if it is on the web , that means anyone can potentially access the site. Secur ity will be important.” Sharon pauses, “Security is weak point in my knowledge. = think = will have to make an appointment with Professor Collins. I will let you know what results from that” “Thanks, = do think the security will be critical.” Where to Star t Professor Collins agrees to meet with her. Sharon explains briefly that what she needs is a way to approach securing the database, and that she doesn’t really und erstand the process. :e nods, ““=t’s understandable. Security is always something we get to at the end of our database design classes or not at all, but it is crucial for a database that is actually going to be put in production and used by hundreds of users. =t’s not easy. Perhaps the best place to begin is to think of security in the context of two terms:
 ‘Authentication” and ‘Authorization’.” Authentication is about veri fying the credentials of a potential user. Are they who they say they are? Are they a legitimate user? Usually this is done by matching a username and a password. But it can be done in other ways too by using a certificate or by Authentication : The process of determining the user is, in fact, who they claim to be. Authorization — granting the authenticated user permissions on database objects Hands ON Database 309 using biometric authenticat ion tools such as fingerprint readers. Authorization is about assigning permissions to users . Once a user has been authenticated they can be assigned permission to access a certain database and certain database objects. If they fail to authenticate, then t hey should have no permissions on anything, of course.” Things You Should Know All database management systems have ways to authenticate users and then authorize them to do what they need to do within particular databases. How they set it up and the level s of “granularity” —that is how finely detailed the permission structure is —vary a great deal . Most database management systems use a combination of server logins mapped to database users. Most have ways of assigning roles or group permissions. Because thi s book is using SQL Server Express, we will look at how it handles authentication and authorization. Authentication in SQL Server Authentication is the process of verifying a user is who they claim to be. With SQL Server this auth entication can be done in a variety of ways. The default method of authorization is “Windows Aut hentication .” =n this method SQL Server lets Windows auth enticate the user, then that Window ’s account is mapped to a SQL Server Login. In SQL Server a login is a server level account. By itself, a login only allows a connection to the server. =t doesn’t contain any other permissions. A database administrator can assign additional permissions, such as the ability to back up a database , but in itself it doesn’t even have any permission to access databases on the server. Things to Think About Why do you think SQL Server uses a two step process: first a login to the server, and then a mapping of that login to a user account? Do you think it makes things more or less secure? Hands ON Database 310 Using Windo ws authentication works well o n network where every user has a Windows or an active directory account, but doesn’t work in a mixed environment or when users, who require different permissions, are accessing the database from the Internet. For these situati ons SQL Server provides SQL Server logins. These logins require a user to enter a user name and a password. A third method is to use a certificate. A certificate can be purchased from various companies and institutions. It functions as an identitifier say ing this request is coming from a known source. The database administrator can map the certificate to a login. For a login to have access to a database, it must be mapped to a specific database user. Database permissions are then assigned to the user. Auth orization in SQL Server Authorization is the process of assigning permissions to access database objects to an authenticated login or user.
 Permissions differ with different objects. A user of a table for instance can be granted permission to SELECT data from that table, UPDATE, INSERT or DELETE. He or she could also be granted the permission to ALTER or DROP the table. A user of a stored procedure must be granted the EXEC (execute) permission, and could also be gra nted the ALTER or DROP permissions. Authorization is the set of permissions that a particular user is “Authorized” to do in the database. It is important to note that in SQL Server a user does not have any permission that is not explicitly granted them. Yo u cannot assume, for instance, that because someone has permission to UPDATE a table that they also have permission to SELECT data from that table. Each permission is distinct and must be specifically granted. Permission — an action granted to a user Hands ON Database 311 Sharon listens carefully, then asks “:ow do you set it up so that one user can do one set of things in the database, and another user can do a different set of things. For example, a tutor can set up his or her schedule. A student should be able to see the schedule but not add to it or change it, ex cept to sign up for a session.” “Different logins can be assigned to different sets of permissions. You could do this user by user, but = would suggest creating roles, a student role, a tutor role, etc., and assigning users to those roles. The role can con tain all the permissions. Doing it user by user is too hard to maintain.” Things You Should Know Roles Roles are collections of permissions. Rather than assign the same set of permissions multiple times to multiple users, you can create a role. Then you can make individual users members of that role. As members they inherit all the permissions associated with the role. This greatly simplifies managing permissions. A user can belong to more than one role. If there is a conflict in permissions between roles SQL S erver always applies the more restrictive permission. So, for instance, if assigned a user to db_denydatawriter, but also assigned the user to a role that permits updating a table, the user would unable to update the table. The db_denydatawriter would over ride the other role. SQL Server has several built in database roles that can be used where appropriate. Things to Think About In what situtions does it make more sense to use roles to control permissions? Can you think of a situation where it makes more sense to just assign permissions to individual users? Role — a collection of related permissions Hands ON Database 312 Table 16: Database Roles Database Role Description db_accessadmin Can ALTER any User and create Schema db_backupoperator grants the user to back up and restore the particular database db_datareader Grants the user SELECT on all Tables and Views in the database db_datawriter Grants the user INSERT , UPDATE and DELETE permissions on all Tables and Views db_ddladmin Grants the ability to CREATE or ALTER any database object db_denydatareader Denies SELECT on all Tables and Views db_denydatawriter Denies INSERT ,UPDATE and DELETE on all Tables and Views db_owner Grants ownership and full permissions on all database objects db _securityadmin Granted the ability to ALTER roles and CREATE Schema public Grants access to database but by default has no permissions on any objects. Every user is a member of public as well as any other roles. The public role cannot be removed Schema Schema is a bit of an overused word in the database world. On one hand schema refers to the meta information about database objects. For instance the schema of a table consists of the column names, data types and co nstraints of the table. Schema also refers to a type of XML file that describes the structure of type of xml file. Another use of the word involves object ownership in a database. In Oracle, for instance, an objects schema is tied to the user who created it. If a user were logged in under a Login “:R,” the table would belong to the schema “:R.” In SQL Server schema have been cut free from logins and user names. Everything has a schema. Every database object must be owned by someone. The default schema in SQL Server is “dbo” which stands for “Database Owner.” You can create schema that are independent of a given user and then create sets of objects that belong to that schema. Users can then be assigned to the schema and given access to those objects. A user that is a member of a schema can be limited to accessing only the objects in that schema. Schema — object ownership in a database Hands ON Database 313 In practice, SQL Server schemas behave a lot like roles. You can use them to accomplish the same tasks. There is a subtle, but important difference, however. A rol e is collection of permissions; a schema is a collection of objects which are owned by a schema. A student schema, for instance, would own any stored procedures or views (see below) need for student access to the database. A student user would be assigned to the schema and then granted permissions on the schema objects. To make matters more complex, a role can assign permissions to a schema and a schema can own roles. For more information on schemas you can go to Microsoft Help at http://msdn.microsoft.com/en -us/library/ms190387.aspx “Do = really want each student to have an individual login?” “=t is possible, especially if you can automate getting the student information. But it might be better to have the application map all students to a single more generic or group login. You could create a stored procedure to capture their id and use it to limit their access to only their own data.” “So where do = start?” Bill thinks for a moment. “= believe first I would look at all the tables from the point of view of each user. What permissions do they need to do the things they must do. “ Sharon remembers, “= wrote down some of those things when = was planning the database.” “Good. Next, after look ing at the permissions that are required, I would try to analyze the threats. What could go wrong, both by accident and by intention. It is important to remember, that threats are not only things that delete data or damage objects. Bad data is a threat. I f you can’t trust the data in the database, it is essentially useless. Maintaining data integrity is about making sure you have good data properly organized and related. Finally, I would design a strategy for providing the access that is needed while mini mizing any threats. I suspect that could mean designing roles and maybe a set of stored procedures and views, but we can look at that later. Do you feel you have enough to start?” Hands ON Database 314 Sharon nods hesitantly. “Yes, = think so. Thanks.” Analyzing Security Needs First she thinks about authentication. Terry should have her own login, of course as program administrator. Tutors could each have an individual login, or should they be mapped to a group. A group would be easier to administer. Students should definitely h ave a group login. Back at her apartment, Sharon sits down to begin analyzing the security for the Tutor database. The first thing she does is review her early notes. Back when she was working on the rules for the database she had outlined some of the req uirements for Terry. The database administrator should have select access to the all the data. That means he or she can view all the data in the tables. The database administrator needs to be able to add, edit and remove records for tutors and courses The database administrator should be able to create queries as needed The database administrator should not be able to create or remove tables or other database objects? As Sharon looks at this, she realizes she should change the na me of the role. =t shouldn’t be “Database Administrator, but rather program Administ rator. The Database Administrat or will be someone other than Terry who will have responsibility to maintain the database and its objects and who can add, alter or drop obje cts as needed. Nobody else would have those permissions. Things to Think About A true Database Administrator has all rights and permissions on a database. How many people should be given full database administrator rights over a database? What are the drawbacks of having just one administrator?
 What are the drawbacks of having several? Hands ON Database 315 So given her earlier notes , Sharon creates a table of the permissions required for the Program Administrator: Table 17: Program Administrator Permissions Table name SELECT INS ERT UPDATE DELETE Constraints Student X X X X Tutor X X X X Course X X X X StudentCourse X X X X Ethnicity X X X X Session X X X X Request X X X X RequestNote X X X X The program administrator would have total control over the data. Sharon is not entirely sure of this, but it seems the best solution. Students, for the most part will enter their own information. Requests too should come from students. Sessions are set up by the tutors and then signed up for by students. But Sharon can easily imagine Terry being requested to enter a tutor’s schedule for them, or a student’s information. She decides to leave it this way for now, but makes a note to revisit it. Next she lo oks at the tutors. Previously she had made these notes: A tutor needs to be able to enter and edit their own schedules but no one else’s. A tutor needs to be able to enter a session report A tutor needs to be able to cancel one of their own sessions, but no one else’s. A tutor should not be able to see student information. Table 18: Tutor Permissions Table name SELECT INSERT UPDATE DELETE Constraints Student Tutor X A public subset of tutor info Course X Hands ON Database 316 StudentCourse Ethnicity Session X X* X* *Only for own sessions Request X RequestNote X These permission assume that the tutor’s information will be entered by the Program Administrator. A tutor can select courses to see what is being offered. They can also look at what is requested. Their main area of permissions though is the Session. They can insert into the sessions table and update sessions, but only their own sessions. They should not be able to update other tutor’s sessions.
 Canceling a session means changing its status, not deleting it from the table. She reviews her notes for student s: A student must be able to view all available sessions A student must be able to enter their own demographic information A student must be able to enter the courses in which they are currently enrolled A student should be able to cancel one of their own sessions, but no one else’s. Table 19: Student Permissions Table name SELECT INSERT UPDATE DELETE Constraints Student X X X Only their own records Tutor X A public subset of tutor info Course X StudentCourse X X X X Only their own records Ethnicity Session X X* *Only for empty sessions in courses in which they are enrolled Request X X Hands ON Database 317 RequestNote X Students need to enter, edit and view their own data in the database, but should not be able to view other student’s data. This includes entering and editing what courses they are taking . Sharon includes the ability to delete a course since students often drop courses. They need to update sessions in order to sign up for tutoring, but should only be able to do it for courses in which they are enrolled. They also need the ability to enter and view requests. There is one final set of users she must consider. These are people who are just viewing the site. They may be students who have not registered for tutoring yet, or they may be people interested in becoming tutors, or they may be simply curious about the school’s tutoring program. The usual name for this role, she realizes is “Public.” Table 20: Public Permissions Table name SELECT INS ERT UPDATE DELETE Constraints Student Tutor X A public subset of tutor info Course X StudentCourse Ethnicity Session X Request X RequestNote X The public should have Select permissions on basic, non -private data, but nothing else. Hands ON Database 318 Threats Professor Collins had said that after analyzing permissions Sharon should look at possible threats. He had also said that threats could be either accidental or intentional. Sharon decides that the best way to consider threats is to once again look at them in terms of each user. Things You should Know Threat Analysis Threat analysis involves identifying all the ways a program or system can be harmed and then identifying strategies for mitigating that threat. Usually threat analysis focuses on intentional attacks. With a database, for instance, an attacker could attempt to insert bad data, change existing data, delete data, add or drop database objects, or, even attempt to drop the database itself. Through the network, an attacker could attempt to compromise the database files themselves. Viruses, and malware are constan t threats. A database administrator needs to keep up with all patches and updates as well as maintain anti -virus and anti -malware programs. The database can also be damaged by accidental actions. An UPDATE statement without the proper criteria, for instanc e, could change more data than the user intended. Identifying threats is a complex and ongoing task. The nature and number of threats is constantly changing. Vigilance and a touch of paranoia are necessary attributes of any database or systems administrator. Disaster Recovery Plan — a plan for how to recover data and availability after various possible disasters Hands ON Database 319 Disaster Recovery Disaster recovery consists in planning for the worst. What happens if a hacker manages to compromise the data? Or what happens if the hard disk holding the database dies? What happens if the building is destroyed in a fire or an earthquake? When thinking about these and other disasters, you also have to determine the answers to other questions such as: How much data can the busin ess afford to lose? How long can the business afford for the database to be offline? The answers to these questions varies , depending on the business. Some business can afford to lose a day’s data, others can’t afford to lose any data at all. Some can afford to be offline for a period of a time, others cannot afford any down time. A disaster recovery plan is a set of policies and procedures designed to mit igate the damage of a disaster. Policies are rules about how to do things. Procedures are step by step instructions for implementing a policy or completing a task. Typically it includes policies of creating and storing backups, log shipping and fail over. Log shipping involves periodically shipping a copy of the transaction log from one server to another. Fail over involves transferring the data connection from one server to a second server in the case of a database or server failure. For a small company, with a single database and server, the policies and procedures could look something like the ones below: Policies: The database server machine will have at least two separate physical drives. Log files will be stored on a separate drive from the database files. Backups of the database and the log files will be done twice daily Drives will be stored off site in a secure site. Policy — rules for how to do things Procedures — step by step instructions of accomplishing a task Hands ON Database 320 Each drive will be stored 24 hours or longer before reuse. Each drive will be labeled with the backup date Backup Procedure: 1. We will maintain 4 portable hard drives 2. Each morning retrieve the two drives with the oldest backup date 3. Perform a full database backup to a one of the drives at 1 1:00 AM. 4. Backup the log files to the Hard drive. 5. Record the current date and time of the backup on the hard disk. 6. Send an employee to deposit the hard drive in a safety deposit box at Westlake security Co. 7. At closing, around 5:00 PM, do a full backup to the second har d disk . 8. Back up the log files to the Hard disk. 9. Record the date and time on the ha rd dis 10. Send an employee to deposit the hard drive in a safety deposit box at Westlake Security C.
 (Westlake is open until 7) 11. If Westlake is closed the employee is to take the disk home and deposit it when he or she picks u the drives the next work day. Rec overy Procedure: 1. Rebuild the computer as necessary 2. Retrieve the hard disk with the most recent back up date 3. Restore the database from backup. 4. Restore remaining transactions from the most recent log s 5. Attempt to recover any lost data by reviewing paper rece ipts and invoices 6. When the database is rebuilt , begin the backup procedure When she looks at the permissions tables Sharon is surprised to realize that the most dangerous user , aside from the database administrator who can do anything, is surely the Program Administrator. Because the administrator has complete UPDATE and DELETE permissions, she or he could accidently delete records that should not be deleted or create updates that change records that should not be changed. The administr ator could also do the most damage intentionally, though Sharon considers it unlikely that a program adminis trator would maliciously attack the database. One again Sharon makes a table, this time to list the threats. Hands ON Database 321 Table 21: Progr am Administrator Threats Role Program Administrator Threat Description SELECT INSERT Data entry mistakes can make the data and the reports based on the data unreliable and inaccurate UPDATE Updating more records than intended by overly broad or missing WHERE Criteria; Bad data in the update DELETE Accidental deletion of records Next Sharon considers the Tutor Role. The primary area of concern with tutors is the Session table. Tutors will have permission to insert and update this table. She co uld imagine a tutor trying to get access to private Student Information. She can also imagine a tutor trying to falsify the tutoring schedule by adding student =Ds to open sessions to look like they were filled when they weren’t. The policy that says that a Tutor’s sessions can be reduced or eliminated if the tutor’s services are not used , provides sufficient motivation for such activities. It is also possible that a tutor whose hours have been reduced or eliminated could attempt to attack the database by c hanging other tutor’s schedules or by entering false schedules. Table 22: Tutor Threats Role Tutor Threat Description SELECT Select private student information INSERT Accidental or malicious schedule entry UPDATE Accidental or Malicious changes to own or other’s schedule DELETE Students will be able to enter their own information. There is always the chance of false or malicious entry there. They also will enter what classes they are taking that quarter. This also could falsified and hard to verify for every student. There are dangers that a student could view another student’s data. =t would not be too difficult for one student to get another students ID number. This also applies to the Hands ON Database 322 Session table where a student can register for a session by entering their ID. A student could enter some other student’s =D as a joke or a way to get back at a tutor. Table 23: Student Threats Role Student Threat Description SELECT See private information of othe r students INSERT False or inaccurate information in Student table UPDATE False or inaccurate information in the Session table, removing other students from scheduled sessions DELETE The public should only be able to view a few pieces of the database. They should be able to see what courses are listed, and view the Session table. They should not be able to insert or update anything in those tables. The public will have only limited se lect permissions. It is possible, if the permissions are not set up properly that some public member could select more than they are allowed to. They might, for instance find a way to view sensitive student data. The more likely threat is that some member s would try to gain additional permissions, perhaps by attempting to impersonate someone assigned to a different role, as a student or a tutor, or even as the program or database administrators. As a member of the public role they present little threat: Table 24: Public Threats Role Public Threat Description SELECT See private information of students , false login INSERT UPDATE DELETE As an impersonator a user would inherit all the potential threats of whatever role he or she managed to impersonate. Sharon realizes that authentication process will be crucial to protecting the database. Hands ON Database 323 Sharon sits and thinks for a long while, trying to imagine other threats. The database could be attacted on the network level, she realizes. Someone could delete or corrupt the files themselves. She would have to talk to the network people to see how they would secure the physical files. There were also a whole set of threats that are not directly related to the users of the database. She make s a list of some of them: The software could fail –database could become corrupt and unusable The hardware could fail --the hard disk could crash There could be fire or some kind of disaster on campus that would damage the server A hacker might gain acces s and destroy database objects or data integrity Finding Solutions Sharon schedules another meeting with Professor Collins. She presents her assessment of permission and threats so far. Professor Collins is impressed. “That is a good assessment, overall.” “The question = have,” says Sharon, “=s what do = do next? :ow do = handle the permissions and threats?” “Let’s start with authentication. = admit it is a bit complicated for this database. You could create a separate login for each tutor and student and then assign them to their roles. That approach has several problems, though. It is hard to maintain. You would have to manage hundreds of logins and keep them up to date. Both students and tutors come and go with some frequency. “ “Even if you assign a stu dent to a role, how do you keep them from seeing other student’s information?” Hands ON Database 324 “Yes that is a problem, but it does bring up a possible solution. =n your application, you have a general student login and a tutor login. When they login they are instantly dir ected to a stored procedure which retrieves their student or tutor ID. Then you can use this ID as a parameter for other stored procedures which restrict what the individual user can do.” “What happens if someone doesn’t have an =D?” “They your application would either tell them they have no permissions or direct them to a form where they could register.” ‘=t sounds like most of the security lies in the application then. You have to make sure that things happen in the right order.” “That’s true to some extent, but the good thing about stored procedures is that you can grant permission to execute a stored procedure that operates on a table, without granting the user any permission s on the underlying table itself. One overall strategy is to create a access layer in the database that consists of stored procedures and views. This layer controls all access to the underlying data.” “Could you show me how to do the login procedures for a student?” “Sure. Let’s open up the query window.” Professor Collins opens the management studio and starts a new query window. “The first thing we are going to do is create the student login. This will be a SQL Server login. It is important to check that the server is set up to accept mixed logins. You can right click on the properties of the server and then click on “Security” in the dialog’s object window. =f it says “SQL Server and Windows Authentication Mode,” you are set to go. If not you will need to change the mode. Click OK, then restart the server for the Stored Procedures — one or more SQL statements grouped to be executed together Hands ON Database 325 changes to take place. You can do that by right clicking on the server again and choosing “Restart” from the menu.” Figure 163 : Server Security Options Things to Watch Out For When you change the server to mixed mode so that it processes both Windows and SQL Server accounts, you expose a built in System Administrators account called “sa.” Because “sa” is built into the Hands ON Database 326 server it is a common target for hackers to attack. In SQL Server 2008 the account is disabled by default. You should only enable it if you have to for some application. If you do enable it, make sure you give it a strong password. “So first we make sure we are in master. Logins are stored in the master da tabase. You can do this with the graphical interface, but = pefer to just use SQL. =t is more efficient.” USE master GO Sharon asks “What is the ‘GO?’ = don’t recognize it.” “The ‘GO’ is unique to SQL Server. =t means basically, finish this command comp letely before moving on to the next. Now we will create the student login . “ CREATE LOGIN StudentLogIn WITH PASSWORD ='p@ssw0rd1' , DEFAULT_DATABASE =TutorManagement GO “Now we will switch to the Tutor database and create a Student role . A role is basically a set of permissions on database objects. Right now the role has no permissions. ” USE TutorManagement Go CREATE ROLE StudentRole GO “Now we are going to creat e the actual procedure . To do that we give the procedure a name. I usually prefix them with ‘usp’ to signify that they are a ‘user stored procedure’ rather than a system stored procedure which usually begins with ‘sp.’ After the name, you list all the parameters for the procedure.
 Parameters are values the user must enter when th ey execute the procedure. In our case, I think we will just need the StudentKey. After the parameters the ‘AS’ keyword signals the start of the content of the procedure. The first thing we are going to do is see if a record exists for the user in the stude nt table. Hands ON Database 327 The BEGIN and END key words mark the beginning and ending of the true block. If it does it will return their lastname. =f it doesn’t exist we won’t do anything. The application can test to see whether the name is returned. If it is not the user c an be directed to a registration form.” CREATE PROCEDURE usp_StudentLogIn @studentKey nchar (10) AS IF EXISTS (SELECT * FROM student WHERE studentKey =@studentKey) BEGIN SELECT studentLastName FROM Student WHERE Studentkey =@studentKey END Things You should Know Stored Procedures Most Database Management Systems support stored procedures. SQL Server provides Transact —SQL for procedures and Oracle provides Procedural SQL or PSQL. MySql 5.0 and better allows the user to create procedures if they choose t he InnetDB file system. Microsoft Access does not support stored procedures although it does allow parameterized queries. The syntax for creating and modifying stored procedures varies with the platform. Stored procedures consist of one or more SQL command s. They allow all the commands to be executed as a unit. So if you have to insert into several tables in sequence, for instance, you can encapsulate all the insert commands into a single stored procedure and guarantee that they are run in the correct order . Stored procedures can accept parameters, values that are passed to the procedure by the user. In the example above, for instance, all the values to be inserted into the tables can be passed to the procedure Hands ON Database 328 as parameters. Internal variables can be dec lared with the DECLARE keyword. In SQL Server, all parameters and variables start with the @ symbol. Stored procedures also allow some of the features of procedural prog ramming languages such as c# or Java. You can add branching with IF statements and loo ping structures using WHILE. You can also add error checking and transactions. (See Professor Collin’s discussion below.) “Now that we have an object, we will assign execute perm ission on the object to the Student role.” GO GRANT EXEC ON usp_StudentLogIn TO StudentRole GO “Now we are going to create a database use based on our login.” CREATE USER StudentUser FOR LOGIN StudentLogin “Finally, = am going to use one of the system stored procedures to add the user to the Student role.” EXEC sys .sp_addrolemember StudentRole , StudentUser “OK, now let’s test our procedure. First, = need to get a valid student key” SELECT * FROM Student “Now let’s test it.” usp_StudentLogin '980001008' “So we see that it returns the lastname “Bradbury.’ That is not the end of testing though. We need to check what happens when you enter a key that isn’t in the database. We also need to log in as a student and test it in that permissions context.” Things to Watch Out For It is a common practice to develop databases and database driven applications with Administrator permissions. It makes guarantees that the developer has access to all the system and application tools Hands ON Database 329 that he or she needs. Many things that work perfectly in Admin mode, may not work at all in a restricted users environment. The solution is not to give users administrative rites . That opens up too many possibilities for attack and error. The solution is to test the database and any database objects or applications in the user’s security context . ‘:ow do you log in as the student?” “There are several ways. One way is to right click on the Query window. Choose ‘Connection’ then ‘Disconnect.’ Then right click again, choose ‘Connection/Connect.’ in the login dialog box change The authentication mode to SQL Server and enter the login name and password.” Figure 164 : Logging In with SQL Server Authentication “Click connect. Notice that at the tray at the bottom of the query window, it now says ‘StudentLogin’.
 Try the SELECT statement again. Notice the results this time.” Msg 229, Level 14, State 5, Line 1 Hands ON Database 330 The SELECT permission was denied on the object 'Student', database 'TutorManagement', schema 'dbo'. “The StudentUser doesn’t have permission to look at this or any of the other tables directly. Now let’s try the stored procedure.” Professor Collins runs the stored procedure. It returns the name “Bradbury.” Sharon says, “You also mentioned views?” “Yes, views are, as their name suggests, ways to view data.
 The big difference between views and stored procedures is that views don’t accept parameters. Each role would have distinct views associated with it. Let’s create a view for the students to look at the tutoring sessions. First we need to log back in as administrator. ” After logging in, he types the following code. CREATE VIEW vw_Sessions AS SELECT TutorLastName AS [Tutor] , StudentKey AS [Student] , SessionDateKey AS [Date] , SessionTimeKey AS [Time] , CourseKey AS [Course] FROM Tutor t INNER JOIN [Session] s ON t.TutorKey =s.TutorKey WHERE SessionDateKey >= GetDate () “You can see,” he says, “that a view is really just a stored query. =t doesn’t actually hold the data, it just filters the data from the tables. It has some other advantages though. Notice how I aliased the columns?
 As far as the user is concerned those al ias’s are the column names. A view can be used to hide the true database names and structures from the user. The user never needs to know or see how the tables are structured or what the actual names of the columns are. Also, like a procedure you can give permissions View — a stored query or filter that represents a user’s “view” of the date Hands ON Database 331 to SELECT against a view without giving any permissions on the underlying tables. That GetDate() at the end is a function that returns the current date according to the computer’s internal clock, so the user should only see current or future se ssion times.” :e turns back to the screen. “OK, l et’s add permission to select from this view to the StudentRole.” Grant SELECT on vw_Sessions TO StudentRole “Now let’s try it. You can treat a view just like a table. You can select everything in it, or jus t some columns or rows. ” SELECT * FROM vw_Sessions This results in: Tutor Student Date Time Course Anderson 990001000 2009 -10 -20 13:00:00.0000000 ITC110 Brown 990001000 2009 -10 -20 14:00:00.0000000 WEB110 Brown NULL 2009 -11 -05 10:00:00.0000000 ITC220 Lewis 990001004 2009 -11 -10 13:00:00.0000000 MAT107 Brown 990001000 2009 -11 -10 14:00:00.0000000 WEB110 Brown 990001002 2009 -11 -20 10:30:00.0000000 ITC220 Foster 990001000 2010 -01 -15 09:30:00.0000000 ITC255 Lewis 990001003 2010 -01 -20 11:00:00.0000000 ENG211 Lewis 990001005 2010 -01 -22 14:00:00.0000000 MAT107 Foster 990001000 2010 -02 -05 10:30:00.0000000 ITC255 Lewis NULL 2010 -02 -10 13:30:00.0000000 MAT107 Lewis NULL 2010 -02 -10 14:00:00.0000000 MAT107 Foster NULL 2010 -02 -13 10:00:00.0000000 ITC255 Foster NULL 2010 -02 -14 11:00:00.0000000 ENG211 Figure 165 : Results of Select * from View “Now let’s try to select against the underlying column names We will try to get a distinct list of tutors.” SELECT DISTINCT tutorLastName FROM vw_Sessions “Notice, the result is an error:” Hands ON Database 332 Msg 207, Level 16, State 1, Line 1 Invalid column name 'tutorLastName'. “So let’s try it again with the column alias:” SELECT DISTINCT [Tutor] FROM vw_Sessions “This time the results are what you would expect:” Tutor Anderson Brown Foster Lewis Figure 166 : Results of SELECT DISTINCT Sharon looks at the screen for a moment and then asks, “What about letting people Insert or update data?” Professor Collins nods. “That is a bit more complex. Since we are on the Student Role, let’s make a procedure that processes a student signing up for a session. First we need the parameters. I am assuming that the student has alread y been authenticated and that the courses have been validated. We could add the course validation her but it would make the whole thing more complicated.” “= would like to see it anyway.” “OK, the first thing we need to do is get the parameters. We basical ly need to know what the Session is and who the student is.” CREATE PROCEDURE usp_SessionSignUp @StudentKey NCHAR (10), @SessionDateKey DATE , @SessionTimeKey TIME “Now, since you want to include a check on whether the student can sign up for the course or not, = am going to introduce an internal variable. Variables are different from parameters in that they don’t have Hands ON Database 333 to be provided by the user. They are declared an d consumed inside the procedure itself. So here I declare the variable to store the courseKey and then assign a value to it using a SELECT Statement. AS DECLARE @CourseKey NCHAR (10) SELECT @CourseKey =CourseKey FROM [Session] WHERE SessionDateKey =@SessionDateKey AND SessionTimeKey =@SessionTimeKey “Next, we test to see if the student has listed this as one of his or her courses. We use the EX=ST key word to do this. It returns a Boolean, true or false. Either the student has the course listed or n ot:” IF EXISTS (SELECT * FROM StudentCourse WHERE StudentKey =@StudentKey AND CourseKey =@CourseKey) “Now we are going to tell the procedure what to do if the EX=STS query returns true. We use the Key word BEGIN to mark the beginning of the true b lock. The first thing we are going to do in the true block is another Exists test. This one is to make sure the student isn’t trying to sign up for a session that is already taken. BEGIN IF EXISTS (SELECT * FROM [Session] WHERE SessionDateKey =@SessionDateKey AND SessionTimeKey =@SessionTimeKey AND StudentKey IS NULL) “So next we need a second true block to tell what we do if the session is, in fact, available. =f it is we can update the record to add the studentkey. I will put it in a TRANSACTION with a TRY CATCH to make sure that any update errors are handled .” Hands ON Database 334 BEGI N BEGIN TRAN BEGIN TRY UPDATE [Session] SET StudentKey =@StudentKey WHERE SessionDateKey =@SessionDateKey AND SessionTimeKey =@SessionTimeKey COMMIT TRAN END TRY BEGIN CATCH ROLLBACK TRAN END CATCH END END “Could you explain the transaction and the try catch a little bit more?” “Sure, technically every action the database executes is a transaction. But you can use the BEGIN TRAN or BEGIN TRANSACTION to control the processing of a transaction. Once you declare a TRANSACTION you hav e two choices about how to complete it. You can either COMMIT it, which causes the SQL to be fully processed. In our case, the update will occur. Or you can ROLLBACK which causes the SQL to undo any actions within the TRANSACTION. That is where the TRY CAT CH comes in. The TRY tests the code for errors. If any errors occur the processing immediately jumps from the line of code where the error occurred to the CATCH block. If no errors occur, the Transaction commits; if it jumps to the CATCH the transaction is rolled back. So here’s the whole procedure.” CREATE PROCEDURE usp_SessionSignUp @StudentKey NCHAR (10), @SessionDateKey DATE , @SessionTimeKey TIME AS DECLARE @CourseKey NCHAR (10) SELECT @CourseKey =CourseKey FROM [Session] WHERE SessionDateKey =@SessionDateKey AND SessionTimeKey =@SessionTimeKey IF EXISTS (SELECT * FROM StudentCourse WHERE StudentKey =@StudentKey AND CourseKey =@CourseKey) BEGIN IF EXISTS (SELECT * Hands ON Database 335 FROM [Session] WHERE SessionDateKey =@SessionDateKey AND SessionTimeKey =@SessionTimeKey AND StudentKey IS NULL) BEGIN BEGIN TRAN BEGIN TRY UPDATE [Session] SET StudentKey =@StudentKey WHERE SessionDateKey =@SessionDateKey AND SessionTimeKey =@SessionTimeKey COMMIT TRAN END TRY BEGIN CATCH ROLLBACK TRAN END CATCH END END “The logic of it goes like this: if the student has the Session course listed as one they are registered for, and if the session has no other student signed up for it, update the session record to add the student key. If either test returns false, nothing happens. We should grant EXEC permission to the Student Role and test the procedure, of course, to make sure if behaves as it is expected. But, I think you can see the advantage of using procedures. You control how th e update occurs. There is no chance of accidentally or purposely updating unintended records.” Sharon looks at the code, thoughtfully. “OK, she says, but how do you know what views or procedures to make?” Professor Collins replies, “=t is not easy. =t tak es time and testing. The first thing I would do is go through each of your roles and make a list of all the ways they need to access the data. Then I would a procedure or view to match that need. It is a lot of work, and it is essential that your set of pr ocedures and views is complete enough for your users to successfully interact with the database, but it is the most secure way to channel that access.” Hands ON Database 336 Things to Watch Out For Whether you use stored procedures or assign permissions directly on the tables, it is essential that your users have all the rights and permissions to do their job. If the permissions are too inflexible, or if something important is left out, it can make the database essentially useless. On the other hand, giving too many rites and pe rmissions —ones not necessary for a user’s work —can lead to accidents and data integrity errors. It is a delicate balance and requires a strong sense of the business needs of each user as they relate to the database Sharon thinks a bit more. “:ow do you co ntrol which procedures are used when?” “That’s a good question. You really have to depend on the application to control that. You can also set up certain policies and procedures.” “Policies and Procedures?” “Yes. There are a lot of things you can’t enforce directly In the database management system. For instance , removing users who should no longer have access to the database. You need to make a policy that says something like ‘=nactive users should be removed from the database within x number of hours afte r becoming inactive.’ Policies are rules about how things should be done. Procedures are step by step descriptions of how a particular task should be performed. For instance, with the policy I just mentioned, you might have a procedure that tells, step by step, how to inform the database administrator to that a particular login is no longer valid. The same thing holds true, by the way, for your disaster recovery plan. It is really a matter of identifying the correct policies and then the procedures to imple ment them.” “Could you explain a little more about what a disaster recovery plan would look like?” Hands ON Database 337 “Sure. The first thing to do is really determine how much data the business can afford to lose. “ “Can a business really afford to lose any data?” “Most of t he time , no. But many businesses, particularly small ones can afford some data loss. The y can often recover some bits of information from paper receipts or invoices. The tutor database can, I think tolerate some loss. Regular backups should probably be suf ficient. This is something you will have to talk to the =T people about. = am sure they have some backup policies already in place.” “Thank you. Looks like = still have a lot of work to do.” “Security is work. But if you don’t do the work, = afraid, it wo uldn’t be long before your database was compromised. Cleaning up after mistakes or deliberate attacks is even more work.” Things We Have Done We have looked at authentication and authorization We have mapped the permissions needed by each user We have cre ated new SQL Logins and users We have create a Role to contain the permissions for the Student User We have created stored procedures and a view We have granted permissions on the procedures and view to the role We have done a preliminary threats assessment We have looked at basic disaster recovery Things to Look Up 1. Find some best practices for creating strong passwords 2. Find out how MySQL manages basic authentication and authorization Hands ON Database 338 3. Find out how Microsoft Access manages basic authentication and a uthorization 4. Look up some best practices for Disaster recovery 5. Find a tutorial on stored procedures in SQL Server 6. Find some best practices for securing SQL Server Table of Additional SQL Key words Table 25: Additional Key Words Te rm Description AS Used with stored procedures and views to mark the beginning of the body of the procedure or view BEGIN Marks the beginning of a block. Often used with other key words such as BEGIN TRAN, BEGIN TRY CATCH With BEGIN and END marks a block to catch and handle any errors cast from code in a TRY block. COMMIT With TRAN completes all the SQL statements in the current transaction and where necessary writes them to the database CREATE Used with an object type to create an instance of that obje cts. For example: CREATE PROC, CREATE TABLE, CREATE VIEW. (Once an object is created it can edited by using the keyword ALTER instead of CREATE) DECLARE Declares a variable. All SQL Server variables begin with @ and must be given a data type. DECLARE @Stu dentKey NCHAR(10) DEFAULT _DATABASE Sets the default database for a Login END Ends a block. Often used with other key words such as END TRAN, END TRY, END CATCH EXISTS Used with a subquery it returns a Boolean. True if the query returns any values, false if not. GRANT With ON and an object name, Grants a permission to a user or role IF Tests an expression to see if it is true or false (Any expression must return a Boolean. If it is true one branch of code can be executed, if it is false another bra nch LOGIN With CREATE adds a Login to the Server PASSWORD Sets the password for a SQL Server Login PROCEDURE (PROC) An object that stores a set of related SQL code that is meant to be executed as one process. It can be used to safely handle user input a nd output. A user can be granted permissions to execute a stored procedure without being given permissions on the underlying tables. ROLE With CREATE adds a Role to the database ROLLBACK Used with TRANSACTION it undoes any statements contained within that TRANSACTION TRANSACTION (TRAN) Used with BEGIN, a TRANSACTION keeps all the SQL statements within the TRANSACTION is suspense until they are all committed to the database, or Hands ON Database 339 rolled back. TRY With BEGiN and CATCH, starts a block of code to be run. I f any command generates an error, the execution will immediately jump to the CATCH block for processing. USER With CREATE adds a User to a particular database VIEW A V=EW is a stored query or filter. A V=EW doesn’t contain any data, but filters it. The i dea is to create “views” of the data that correspond to how particular sets of users interact with the data in the database WITH Sets Properties on an object such as a LOGIN Vocabulary 1. Authentication 2. Authorization 3. Disaster recovery plan 4. Permission 5. Policies 6. Procedures 7. Roles 8. Schema 9. Stored procedures 10. Views a) an action that a user has been granted the right to do in a database b) A stored query or filter that reflects a users view of the data c) The process of confirming a user is who they claim to be d) A set of related permissions e) A rule for how to do some activity f) one or more SQL statements grouped to be executed together Hands ON Database 340 g) The processes of assigning permissions to authenticated users h) A plan to recover data and maintain availability after any kind of disaster i) Ste p by step plan for accomplishing a task Practices 1. Review the pizza database we built in chapter six and queried in chapter 8. Identify the users of the database and determine what kind of access to the tables each of them needs. 2. Develop a threat analysis o f for the pizza company database . 3. Create roles for the various types of users in the pizza database. 4. Create a SQL Server login for a user and assign the user to a role 5. Create a view for one of the roles and grant permission to select from the view to one or more users. 6. Assume you are working for a small bookstore. They have a database that keeps track of all their inventory and all their sales and trades with customers. This bookstore also maintains an on -line presence with a web site where users can brows e the catalog and purchase books using second party software to process the payment. There is only the one store and they are located in the downtown area of a city known for occasional severe earthquakes. Create a disaster recovery plan for this company. 6-11 Look at this stored procedure and answer the questions below: CREATE PROCEDURE usp_AddRequest @CourseKey NCHAR (10), @StudentKey NCHAR (10), @RequestKey NCHAR (10) AS DECLARE @Date DATE DECLARE @Status NCHAR (10) SET @Date =GETDATE () Hands ON Database 341 SET @Status = 'Active' BEGIN TRAN BEGIN TRY INSERT INTO REQUEST (RequestKey , CourseKey , RequestDate , RequestStatus , StudentKey) Values (@RequestKey , @CourseKey , @Date , @Status , @StudentKey) COMMIT TRAN END TRY BEGIN CATCH ROLLBACK TRAN END CATCH 7. What are the names of parameters in the procedure? 8. What are the names of the variables? 9. What happens to the transaction if there is no error? 10. What happens to the transaction if there is an error? 11. Why do you need a TRY CATCH with a Transacti on? Scenarios The apartment managers at Wild Wood like what you have done so far, but as they have database takes shape they have begun to worry about security. The Tenant information should not be accessible to just Hands ON Database 342 anyone. And they would like to keep the financial inf ormation internal, and not let outsiders or other companies see the details of their operation. Create tables of the data access needs of your users Create a security plan that includes authentication and authorization and general policies and procedures. Consider the use of roles, stored procedures, views, and other tools. Create a preliminary threat analysis Make a preliminary disaster management plan Create a view of the data that is tailored to the needs of one of your uses For extra credit create a st ored procedure that executes one of the basic activities for your database (making a rent payment, for instance, or a maintenance request) :aving shown Vince your work so far, you broach the topic of security. A first Vince doesn’t see much need for secu rity measures, but you point out a few areas that should be considered. For one thing, Vince probably doesn’t want to share his list of interested customers. That is valuable information in itself, and his customers will have an expectation of privacy. Add itionally, the day to day financial information concerning sales and purchases is probably best not available for general public perusal.
 You also point out that it is important that Vince be able to trust his data. He needs to know that no one has acciden tally, or on purpose, messed up his inventory or sales data. Create tables of the data access needs of Vince’s users Create a security plan that includes authentication and authorization and general policies and procedures. Consider the use of roles, store d procedures, views, and other tools. Hands ON Database 343 Create a preliminary threat analysis Make a preliminary disaster management plan Create a view of the data that is tailored to the needs of one of your uses For extra credit create a stored procedure that executes one of the basic activities for your database (purchasing an album, for instance, or a recording a customer request) As with any database, data integrity is important to the software database at Granfield College. If they are audited, they have to show that they know what software they have, how it is licensed and on what machines it is installed. Accident and error are the most likely threats to their data integrity, but it is always possible that someone might try to purposely disrupt their data. Create ta bles of the data access needs of your users Create a security plan that includes authentication and authorization and general policies and procedures. Consider the use of roles, stored procedures, views, and other tools. Create a preliminary threat analysi s Make a preliminary disaster management plan Create a view of the data that is tailored to the needs of one of your uses For extra credit create a stored procedure that executes one of the basic activities for your database (Installing a piece of software , for instance, or a processing a software request) Hands ON Database 344 Security has always been a part of the WestLake :ospital’s database. =n a double blind study it is absolutely essential that no one can tamper with the data. Also, patient confidentiality and the sensitive nature of the study requires that their records and the records of their sessions with the doctors be kept absolutely private and secure. The researchers are anxious to see your plan for securing the data. Create tables of the data access needs o f your users Create a security plan that includes authentication and authorization and general policies and procedures. Consider the use of roles, stored procedures, views, and other tools. Create a preliminary threat analysis Make a preliminary disaster m anagement plan Create a view of the data that is tailored to the needs of one of your uses For extra credit create a stored procedure that executes one of the basic activities for your database (making an appointment, for instance, or letting a patient see some of their doctors session notes on them.) Hands ON Database 345 Appendix One: Using Microsoft Access with the Book The planning and design aspects of database are the same whatever database management system you are using. Chapters One through five can be used without modification. The physical design however does require some variation. (All screenshots are from Microsoft Access 2010, running in 2007 Compatibility mode. There should be no differences running in full 2010 mode.) Creating the TutorManagement Database in Access Start Access. Choose Blan k database and name it “TutorManagement” and click “Create” =n the new TutorManagement database click “Create” tab for the Create ribbon, and then click the “Table” icon. Click the triangle and ruler icon to get the table design view. =n the dialog box t hat pops up, name the table “Tutor.” Right click on the =D field and from the context menu choose “Delete.” Say “Yes” to the dialog that pops up explaining that this requires deleting the primary key. Now add the fields and the data types. Not e the Field P roperties below the table. =n the “General” tab you can set the Hands ON Database 346 length and other properties of the field. The “Required” property is used to set the status of nulls. Required with a value of “no”, means allow nulls. Required with a value of “yes”, means th e field does not allow nulls. To make “ Tutor Key” a key field , select the Tutor Key row in the design view and click the Key icon on the ribbon. In those tables where you need to select multiple fields for a key, hold the control key down and select each of the fields to be included in the key, the click the key icon on the ribbon. Figure 167 :Table Design View Access data types differ some from the SQL Server data types below is a table . Only the data types used in the TutorManagement Database are listed. Hands ON Database 347 Table 26: Some Access Data Types Microsoft Access Data Type SQL Server Data Type Text Varchar() Yes/No Bit Numeric Default is INT, Date/Time To make the table resemble the Date data type choose the format “short date”, to make it match the datetime data type choose the “General” format, to make it resemble the Time data type choose the format “Long Time” Memo Varchar(max) Create the remaini ng tables the same way, remembering to remove the ID column that Access adds. Creating the Relationships Once the tables have been created , you can add the relationships. From the ribbon tabs select “Database Tools.” On the Database Tools ribbon click the “Relationship” icon. =n the Show Dialog box, click on the first table, hold down the Shift key and then click on the last table. Click the add button. This will load all the tables into the relationship window. It should look something like this: Hands ON Database 348 Figure 168 : Relationship Window The tables can be moved around however you wish to make viewing them more convenient. To create a relationship, select the key field in the table on the one side of the relationship and drag it to the corresponding foreign key in the many side of the relationship. This will pop up the following dialog box: Hands ON Database 349 Figure 169 : Edit Relationship Dialog Make sure that the tables and the fields are correct. Check the Enforce Referential Int egrity check box. Then click create. When you are done your relationships should look something like this. The tables have been rearranged to show more clearly Hands ON Database 350 Figure 170 : Relationship Window with Relationships Adding Data To add data to the tables, close the relationship window. Double click on a table name in the All Tables list. This will open the table in the add/edit mode: Hands ON Database 351 Figure 171 : Data Editiring View Do this for all the remaining tables. It is important that you do them in the proper order. Parent tables must be completed before child tables. SQL in Microsoft Access To run a SQL statement in Microsoft Access, go to the Create Ribbon tab and c reate a new query in Design View. Click the x t o close the Add Table dialog. Hands ON Database 352 Figure 172 : Query Design, SQL view Click the SQL View on the Ribbon and enter the SQL Hands ON Database 353 Figure 173 : SQL Query Click the RUN icon to run the query: Hands ON Database 354 Figure 174 : Query Results The following queries need some adjustment to run in Access. Queries with the L=KE key word use an “*” for a wild card rather than the percent “%” sign. So SELECT ItemName , ItemPrice FROM Inventory WHERE ItemName LIKE ‘T%’ Would be SELECT ItemName , ItemPrice FROM Inventory WHERE ItemName LIKE ‘T *’ Queries with dates in the critera delineate dates with the pound “#” sign rather than single quotes. SELECT tutorkey , courseKey , SessionDate , StudentKey FROM Session WHERE SessionDate BETWEEN '11/1/2008' AND '11/15/2008' Hands ON Database 355 Becomes, SELECT tutorkey , courseKey , SessionDate , StudentKey FROM Session WHERE SessionDate BETWEEN #11/1/2008# AND #11/15/2008# Single Inner joins work with the INNER JOIN key words, but multiple INNER JOINS must be em bedded. In Access it is easier to use the equi -Join syntax for any query that requires more than one join. Instead of SELECT s.StudentKey , StudentLastName , StudentFirstName , c.CourseKey , CourseName , RequestDate , RequestStatus FROM Student s INNER JOIN Request r ON s.StudentKey =r.StudentKey INNER JOIN Course c ON c.CourseKey =r.CourseKey WHERE RequestStatus ='Active' use the following query : SELECT s.StudentKey , StudentLastName , StudentFirstName , c.CourseKey , CourseName , RequestDate , RequestStatus FROM , Student s , Course c , Request r WHERE s.StudentKey=r.StudentKey AND c.CourseKey=r.CourseKey AND RequestStatus='Open' The outer join listed in Chapter Seven also works fine. Security in Microsoft Access The security features may be where Access differs most from SQL Server. Access 2007 does not support user level security. (Earlier Versions do, but Microsoft does not recommend going back to these earlier versions unless you have a legacy system that requires User level access.) You cannot create users and groups. Security access is managed by the Network or SharePoint. It is possible to encrypt the database and assign password protection to the database itself. Hands ON Database 356 Further, Access does not support true Views or Stored Procedures. It does support parameterized qu eries which allow the user to supply criteria for the query when the query is run. There are also action queries that can be used to create tables, update or delete records. But unlike true stored procedures, each query can only do one thing and there is n o error checking. One could replicate much of the functionality of stored procedures using Visual Basic for Applications, but this would require skills that are beyond the scope of this book. Students using Access should be able to do all the Practices except 4 and 5 . They should be able to do all the Scenario exercises except creating a stored procedure. The view can be emulated by creating and saving a simple query. Hands ON Database 357 Appendix Two: SQL Server Express This appendix is meant to describe generally how to get and install SQL Express, and how to navigate through some of the features used in the book. It is not meant to repeat all the step by step instructions listed in the book, or to provide a full description of the menus and features of SQL Express. Where to get SQL Server Express SQL Server express can be downloaded for free from Microsoft. Just go to http://www.microsoft.com and enter SQL Express in the search box. Usually there are a couple of choices of what to download. Make sure that you download the one that is appropriate to your operating system (x86 32 bit or 64 bit).
 Also , if possible, chose one that has the management studio included. If not, you will have to download the management studio separately. SQL server is a part of the default install with any full version of Visual Studio though the management studio is not included. It is possible to build databases, databa se tables and add data from within the Visual studio environment, but for compatibility with the book and ease of use, it is recommended that you download and install the management studio separately. It is not necessary to download and reinstall SQL Serv er Express itself. Installation After downloading the file, double click it to run the installation program. Accept the defaults. Use Windows authentication. If prompted, add the current windows account to the Administrators group . The Management S tudio When you open the Management studio, you will need to connect to an instance of SQL Server. The SQL Express s ervice is named [computer name] \sqlexpress. You can enter the relative path “. \sqlexpress.” Use Windows Authentication and press Connect. Hands ON Database 358 The first look of SQL Server can vary, but below is a typical view. Hands ON Database 359 The first thing to look at is the Object Explorer. The Object Explorer shows all the objects related to the server. Related objects are grouped in folders. For the purposes of the book, we will focus on the Database folder and the security folder. Clicking the “+” beside the folder will expand a folder and show its contents. Right clicking a folder will open a context menu with all the options for that object type.
 Right clicking on the da tabase folder will provide several options including “Create Database.” Once the database is created, you can click the + beside the database to expand its contents. Right clicking on the tables folder opens a menu that contains “Create Table.” Expanding the folder of a particular table reveals a columns folder that can also be expanded to show the particular table’s columns. Hands ON Database 360 The Database Diagram folder conta ins database diagrams. Right clicking on this folder the first time, will open a dialog Say ing OK will enable you to make a new database diagram. It is important to realize security folders exist in two distinct places. Each database has its own security folder for database specific security objects including Users. Each Server also has a Securi ty folder for server level security, including Logins: Hands ON Database 361 Hands ON Database 362 Appendix Three: Visio Microsoft’s Visio Professional is a modeling and diagramming program. It is considered a Microsoft Office program but does not ship with Office. It must be purchased separately. Visio comes in different editons: Standard, Professional, and Enterprise. The standard edition does not contain the Database Model Diagram Template . To get it you need to have at least Professional. (The Professional version is available to students at low or no cost in schools which belong to Microsoft’s Academic Alliance.) Viso has a rich set of templates for modeling everything from a household ga rden space to complex software components. The scope of these templates is much too rich and varied to be covered here. This appendix will only focus on the Data Modeling template used in Chapter Four. Opening the Data Model Template When you open Visio, ch oose “Software and Database” under Template Categories. Then choose “Database Model Diagram.” You can choose US Units or Metric for a measurement unit. This only effects the background grid. If you choose US Units the grid will be arranged in inches, if me tric in centimeters . Hands ON Database 363 Figure 175 : Finding Data Model Diagram Template Click the “Create” button to create a diagram. Alternately , you can use the menu and Choose FILE/NEW/Software and Database/Database Modeling Diagram. Components of the Database Model Diagram Below is a picture of the Database Model diagram template when it first opens. Yours may vary depending on previous sessions and what options are selected. You may want to do a few things before proceeding with anything else . First adjust the size of the grid. Go to the menu and select VIEW/ZOOM 100%. This will make the grid big enough to actually be useable. Only the Entity and Relationship shapes are relevant to the diagrams in this book. Hands ON Database 364 Figure 176 : Database Model Diagram Entities To add an entity to the diagram, drag the entity shape onto the grid. Below the grid, is the properties window. When the Entity is selected you can see and edit the entity’s properties. They are divided into categories. The first category is Definition. It lets you name the entity. Hands ON Database 365 Figure 177 : Entity Definition The second category is “Columns”. Clicking on this lets you define the entity columns and data types. =t also lets you define the prima ry key. Relationships To create a relationship, drag a relationship shape onto the grid. Take the arrow end and drag it to the center of the primary key side of the relationship. The outline of entity will turn red when the end is connected to the entity. Take the other end of the relationship shape and drag it to the foreign key entity. It also will turn red when connected. Visio will also add the primary key column to the child entity as a foreign key . Hands ON Database 366 When the Relationship is selected you can alter its properties. In particular, if you select the “Miscellaneous” category you can set the cardinality of the relationship. Figure 178 : Relationship Properties If you need the Foreign Key to be a part of a composite key in the child. Select the child entity and under the Columns properties check the PK checkbox for that column. Hands ON Database 367 Figure 179 : Column Definition Database Options On the menu under DATABASE/OPTIONS are two very important dialogs for setting diagram o ptions. The Drivers option lets you choose the underlying database type. You can use it, for instance, to change the type from Microsoft Access to SQL Server. Hands ON Database 368 Figure 180 : Database Drivers Diaglog The Document dialog lets you change things about the way the model is displayed in Visio. Under the Relationship tab, you can change from the default arrow headed relationships to the Crow’s feet relationships used in the book. Hands ON Database 369 Appendix Four: Common Relational Patterns There are many types of relations that occur over and over again in relational design. One to Many This is the normal relationship between any two tables. One department can contain many employees. Linking table Every man -to-many relation must be resolved into two one -to-many relationships by means of a linking table. One book can have many authors; one Author can write many books. The linking table often has a composite k ey consisting of the foreign keys from the two tables it resolves. Department PK DepartmentKey Employee PK EmployeeKey FK 1 DepartmentKey Book PK BookKey Author PK AuthorKey BookAuthor PK ,FK 1 BookKey PK ,FK 2 AuthorKey Hands ON Database 370 Look up table Look up tables help mainta in constancy and data integrity. The following diagram shows a table that lists the States as a lookup for an Address ta ble. Weak entity A weak entity is an entity that depends on another entity for its meaning. For instance, the doctor contacts depend on the Doc tor table for their meaning. Weak entities are way of dealing with a multi - valued attribute such as contacts, or dependents. Master Detail Typically, many kinds of business transactions are broken into a least two tables. One table stores the basic information of the transaction, the other stores the line by line details. If you look at a receipt you will see the general information at the top: the date, the customer number, the employee number, etc., State PK StateKey Address PK AddressKey FK 1 StateKey Doctor PK DoctorKey DoctorLastName DoctorFirstName DoctorContact PK DoctorContactKey DoctorContactType DoctorContactInfo FK 1 DoctorKey Hands ON Database 371 and then below that the line by line list of what has been purchased. The master table stores the general inf ormation; the detail table stores the specific item information. In the example below the Customer table and the Employee table are not pictured, though they are represented in the Sale table as Foreign Keys. Generalization/Sp ecialization The generalization/specialization pattern is used as a way to prevent excessive nulls in a table. Different resources have different attributes to describe them. If all were stored in the Resource table, when the resource was a book, the artic le and web attributes would be null. If the resource were an article most of the Book and Web attributes would be null. In the generalization/specialization pattern the General table, in this case the Resource table, stores all the common data that is shar ed by each kind of resource. The data that is specific to each kind is separated out into the appropriate table. The child tables have a one -to-one relationship with the parent table. (This is very similar to Inheritance in Object Oriented programming.) Sale PK SaleKey SaleDate CustomerKey EmployeeKey SaleDetail PK SaleDetailKey Quantity FK 1 SaleKey FK 2 InventoryKey Inventory PK InventoryKey InventoryItem InventoryDescription Hands ON Database 372 Taking Normalization a Little Farther Following the logic of normalization, it is possible to argue that Employees and Customers are both, first of all, people, and that they all have names and birthdates,etc. So rather than create a separate Customer tab le and an Employee table, which means repeating those fields , one can create a single Person table. There is still an Employee table that contains information specific to employees, but it doesn’t contain the Person information. The Employee table is link ed though a linking table to the Person table. This has the additional advantage of making it easier to secure personal information from those who don’t need to see it. Addresses can also be seen as a distinct entity, especially since any person can have multiple addresses. The same goes with contact information. The result of this is a more complex set of tables and relations, but it is more thoroughly normalized, with even less redundancy. The foll owing ERD shows these relations. It also includes the Master Detail relation. It is also useful to note the product table is Hands ON Database 373 separate from the inventory table. This prevents a product from disappearing if it is not longer in inventory (the deletion anomaly) Person PK PersonKey Address PK AddressKey Contact PK ContactKey PersonAddress PK ,FK 1 PersonKey PK ,FK 2 AddressKey PersonContact PK ,FK 1 PersonKey PK ,FK 2 ContactKey Employee PK EmployeeKey EmployeePerson PK ,FK 1 PersonKey PK ,FK 2 EmployeeKey Customer PK CustomerKey CustomerPerson PK ,FK 1 PersonKey PK ,FK 2 CustomerKey Inventory PK InventoryKey FK 1 Productkey Sale PK SaleKey FK 1 EmployeeKey FK 2 CustomerKey SaleDetail PK SaleDetailKey FK 1 InventoryKey FK 2 SaleKey Product PK Productkey Hands ON Database 374 Glossary Aggregate Function An SQL Function that operates on several rows at a time. These are functions like COUNT, AVG and SUM Alias Providing an alternative name for a column or table in SQL to make the results more readable AND SQL Boolean Operator that joins conditions in a WHERE clause. With an AND operator, both conditions must evaluate as true for the criteria to be true AS SQL Key word used to alias columns or tables AS SQL Keyword used to mark the start of the body of a View, Stored Procedure or a Trigger Attribute A quality that describes or defines some aspect of a database Entity.
 Attributes often correspond to the columns in the table created in the physical design process. Authentication Used in Security and Logins. Authenticat ion determines if users are who they claim to be. This can be done with user name and password, with certifications, or by other means. Authorization Authorization is the granting of permissions on objects in the database. BEGIN SQL Key word used to begin a block of code BETWEEN SQL operator used in the WHERE clause that returns all values BETWEEN two values. It is inclusive of the ends. Business Intelligence Business Intelligence involves analyzing database data for valuable Hands ON Database 375 trends, p atterns, or other information. Many database management systems include suites of tools to facilitate this kind of analysis.
 Business Intelligence is often associated with Data Warehousing Business Rule A business specific rule about how data is captured stored and/or processed. For instance, a valid grade point must be between 0 and 4.0. Cardinality Cardinality refers to the number of allowed instances of a relationship. In the usual cardinality of one to many, for instance, each record on the one side, can have zero to any number of records on the many side. Cardinality can be more specific however. Each patron at a library can have only 20 items checked out at once. This has a cardinality of 0 to 20. CATCH SQL Key word used in error trapping as part of a TRY CATCH structure. CATCH catches all errors that occur in the TRY block and contains any SQL code to deal with those errors. Client An application that calls on a service offered by a server. For instance a web browser requesting a specific web pag e from an internet server. Closed Ended Question A question with limited possible responses, such as a multiple choice or a ranking COMMIT SQL key word used with TRANSACTION. COMMIT executes all SQL statements in the transaction and writes any changes to the database Composite Key A key that consists of more than one attribute. No Entity has more Hands ON Database 376 than a single key, but that key can consist of multiple attributes. Constraints Limits on values or actions. For instance, the Primary Key constraint limits a c olumn to unique values; a Foreign Key constraint limits the foreign key column to values that exist in the primary key table. CREATE SQL key word for creating objects such as TABLE, VIEW, PROCEDURE, TRIGGER, etc. Cross Join An SQL Join that joins each row of the first table to every row of the second table. Sometimes called a “Cartesian Dump” Crow’s feet notation A type of notation for Entity Relationships in Entity Relation Diagrams that depicts the many side of a relationship with a three pronged end ca lled a “crows foot.” This type of notation provides more information about the cardinality of a relationship than the arrow notation for relationships< Data integrity Refers to the accuracy and quality of the data. Data Mining Data Mining is the process of querying vast quantities of disparate types of data looking for statistic trends and patterns that provide business intelligence. Data Types Columns in a table are assigned a data type to help constrain the data they can contain. Data types basically fall into character type data, numerical data, date time data, and large file data such as pictures or whole documents. Some DBMSs add other data types such as XML, Geographical, or Geometrical data Data Warehouse A data warehouse is a collection of data from disparate sources used in Data Mining Hands ON Database 377 Database Transactions Every action that occurs in a database is a transaction. Transactions are processed as a whole and either committed or rolled back.
 Transactions can be manually controlled in SQL with the BEGIN TRAN keywords DDL Data Definition Language. Refers to that part of SQL that is concerned with creating and modifying database objects Declarative Language A language like SQL where a programmer declares what they want to do, not how they want to do it. DECLARE SQL Key word used to Declare a new SQL variable. DEFAULT _DATABASE SQL, used to assign a default database to a SQL Login DELETE SQL Keyword use to delete on or more rows of data Deletion Anomalies Where removing data in one table leaves data “orphaned” in another table. For example Deleting a customer leaves orders without a customer making the order. Also where deleting a row unintentionally deletes needed information —removing the last item in a category, for instance, removes the catego ry as well< Delimited files Text files with values separated by a delimiter such as a comma or a tab. Denormalization The process of combining tables that had been separated through the process of Normalization in order to improve application performance . DESC SQL keyword used to sort a column in descending order Disaster recovery plan A plan preparing for database and business recovery after any of a variety of disasters Hands ON Database 378 DISTINCT SQL keyword used to return only unique rows in a query DML Data Manipul ation Language: The portion of SQL used for querying, inserting, updating and deleting data from tables Domain The business problem area. In an Inventory database, for example, the Domain would include things like products, suppliers, orders from suppliers, etc. Domain entities Those database Entities that relate directly to the business problem under consideration END SQL keyword which terminates a block of code Entity An object of concern to a database, such as customer or sale. Used in the lo gical design phase of a database. Entity Relation Diagrams A diagram that shows Entities, their attributes and the relationships among them Equi Joins A join of two or more tables where the relationship between tables is expressed with the = sign. In som e older DBMSs this is the only way to perform a join. (The term is also used sometimes to describe any join that has equality as a criteria) Exception A variation from the rule. For instance, the rule is no discounts for customers, but an exception is made for one very long term customer. EXISTS SQL keyword used with sub queries to see if a value exists in the result set First Normal Form In 1NF all multivalued attributes and all arrays or lists are separated into unique rows Hands ON Database 379 Fixed width files Text f iles with each column occupying a set width Foreign Key A primary key from one table repeated in second table in order to create a relationship between the tables Form A form is used to take data entry whether on the web , in Windows or on paper FROM SQL keyword used with a SELECT statement to specify which table or tables is being used Functional Dependencies When two or more attributes depend on each other for meaning rather than on the table key. These can be spotted by blocks of repetition. They r epresent separate themes and should be broken into separate tables. GRANT SQL keyword used in granting permissions on objects GROUP BY SQL keyword used for sorting table by given columns HAVING SQL Keyword used for criteria which include an aggregate function. For example: HAVING AVG(Price)<100 IF SQL keyword used for branching conditions INNER JOIN SQL keyword used words used for joining two tables. Inner joins return all matching records in both tables INSERT SQL keyword beginning a statement to insert a record into a table Insertion Anomalies Anomaly where one cannot insert a record because another is required but one cannot insert that record because it depends on the previous record, etc. INTO SQL keyword used with the INSERT statement to spe cify the table where the insertion will occur. Hands ON Database 380 IS NULL SQL keywords used in a WHERE clause to determine if a column value is null or not. LIKE SQL keyword used in a WHERE clause to search for a pattern in character data . Used with wildcards ” % “and ” _”. “%” is used to for any number of characters; “_” is used for a single character Linking entity An Entity used to resolve a many -To -many relationship into two one - to-many relationships. Logical design The design of a database without regard to the physical implementation of the database LOGIN SQL keyword used in creating a new Login to SQL Server Lookup entity An Entity used to store lookup values such as state names or zip codes Management Information System A database system designed to provide management level information such as profit loss statements, sale summaries etc Maximum cardinality The highest number of allowed relationships Minimum cardinality The least number of allowed relationships Naming conventions Conventions for naming database objects in order to maintain consistency and readability Natural Key A key that naturally occurs in the attributes of a Entity, such as a student ID or a course name Normal Forms Normal forms are sets of princi ples and practices meant to remove data anomalies from databases. Each originated as a white paper on how to remove specific types of anomalies from data sets NOT SQL Boolean Operator used in the WHERE to exclude a value from Hands ON Database 381 the results Null A null is an unknown value. It is not the same as a 0 or an empty string. As an un known, it cannot be evaluated with = <> ! ON SQL Keyword used with an INNER JOIN to introduce a clause that shows how two tables relate Open Ended Question A question without a set number of responses PASSWORD SQL keyword part of CREATE LOGIN Permission The right to do some action in the database such as SELECT, UPDATE or DELETE Physical design The design of the database within a particular DBMS. The physical design takes account of file systems and disk locations as well as DBMS specific data types Policies A list of rules for dealing with events or tasks Primary Key A constraint that uniquely identifies each row in a table. The primary key is repeated in other tables as a Foreign Key in order to make relationships between tables Problem Domain The part of the database design that deals with the specific business related objects and concerns Procedural Language A programming language like C#, Java or C++ in which the programmer specifies the procedure or steps to do a task. A procedural language defines how to do something whereas a declarative language describes what to do. Procedure A collection of parameters , SQL statements and variables that are executed together as a single program to accomplish a task Hands ON Database 382 PROCEDURE (PROC) SQL keyword use when creating or modifying a stored procedure Qualified Name In SQL a column can be qualified to distinguish it from other column with the same name. A qualified column consists of the Table name a dot and the column name. Table 1.Column1 . A fully qualified column consists of ServerName.DatabaseName.SchemaName.TableName.ColumnName Redundancy Redundancy refers to data that i s repeated in multiple places in a database Referential Integrity Referential integrity refers to enforcing the constraints of primary key/foreign key relationships. Specifically, you cannot insert a value into a child table unless it exists in the parent table. You update the foreign key column of a child table if it would change it to a value that is not in the parent table. You cannot delete a record from the parent table if it has related records in a child table, unless you first delete the records i n the child table. Relational Database A database that stores data related in two dimensional tables where unique column values from one table repeated in another table form relationships Relational Design The process of identifying the entities, attribu tes and relations among elements of data related to a specific business problem Report Output of summary material from data Requirement Something a database or program must do to fulfill its function ROLE In a database a set of permissions related to a particular use of a database Hands ON Database 383 ROLLBACK Used with a TRANSACTION, ROLLBACK undoes all SQL statements since the BEGIN TRAN statement Scalar Function An SQL function that operates on one table row at a time Schema Schema has several related meanings. On the one hand it is the structure of a database and its tables; on the other it is the structure of ownership of objects. dbo, for instance is the default schema for database objects. Lastly, it can be an XML d ocument that describes the structure of another XML document. Second Normal Form The removal of functional dependencies. The separation of broad themes into separate themes. Server A program that offers services to a client application. For instance a web server offers web pages to a browser; a database server offers data to a client requesting it . SQL The language that is most commonly used in relational database to Define database objects (DDL), and to manipulate data (DML) Stakeholder Someone who h as a “stake” in the success or contents of the database Statement of work A statement of what needs to be done often including a history of the problem a statement of scope, objectives of the project, time lines and delvierables Stored procedures See pro cedures Surrogate Key A primary key usually numerical and often automatically generated.
 It has no meaning, but uniquely identifies each row. Third Normal Form Removes transient dependencies. These are where one column is Hands ON Database 384 more closely related to another column in the table than the primary key. Transient dependencies should be separated into their own table. Transact SQL Microsoft’s version SQL Transaction Database A database used to store data from immediate transactions such as point of sale data, or real time activities of various types. Transaction database need to be fast and often must be available twenty four seven Transient Dependencies Transient dependencie s occur when one column depends on another column not the key for its meaning. Transient dependencies are more subtle than functional dependencies, but they also should be broken into separate entities Trigger A trigger is a collection of SQL commands that are executed when a database event occurs such as an INSERT, UPDATE or DELETE. TRY SQL keword used with a TRY CATCH structure to capture errors. All the code in a TRY block will be tested. If an error occurs the execution will jump to the CATCH block. Unicode An expanded text standard that includes definitions for most language and character groups, not just English. The first 255 characters are equivalent to the ASCII standard. Update Anomalies An update anomaly occurs when a record must be updated in more than one table. Errors in entry can make it so that the the records no longer agree in their values. To avoid this a database should be normalized so that any update of a record occurs in only one place. Hands ON Database 385 USER SQL keyword which specifies a USER with permissions in a particular database. VIEW SQL keyword: A VIEW is a stored query which organizes data for a particular view of the database. Weak entities A weak entity is an entity that depends o n another entity for its meaning. For instance, a table of employee dependents which relies on an Employee table for its meaning WITH SQL keyword used to assign properties in a statement Work shadowing The act of following someone as they perform the dut ies of their job to see what the job entails and what actions they typically perform during the work day. XML Unicode based markup language that conforms to a small set of rules ensuring consistency. It used for document file formats and to transfer data between databases and applications.

 GET YOUR EXPERT ANSWER ON STUDYDADDY

 Post your own question
and get a custom answer

 GET ANSWER

 [image: LET'S ORDER THE BEST ASSIGNMENT SERVICES]

 Have a similar question?

 Continue to post
 Continue to edit or attach image(s).

 	
 [image: Fast and convenient]
 Fast and convenient

 Simply post your question and get it answered by professional tutor within 30 minutes. It's as simple as that!

	[image: Any topic, any difficulty]
 Any topic, any difficulty

 We've got thousands of tutors in different areas of study who are willing to help you with any kind of academic assignment, be it a math homework or an article.

	
 [image: 100% Satisfied Students]
 100% Satisfied Students

 Join 3,4 million+ members who are already getting homework help from StudyDaddy!

 	Homework Answers
	Ask a Question
	Become a tutor
	FAQ
	Contact Us
	Privacy Policy
	DMCA
	Terms of Use
	Sitemap

 Copyright © 2024 StudyDaddy.com

 Worbert Limited - All right reserved.

 20 Christou Tsiarta Elma 2, 22, 1077, Nicosia, Cyprus

