After reading the article “Type A Blood Converted to Universal Donor…” tell me your thoughts on the current challenges in blood transfusions today? What are the advantages of this new process, and pot

Gut bacteria provide a new way to increase the type O blood supply. ISTOCK.COM/ARINDAM GHOSH

Type A blood converted to universal donor

blood with help from bacterial enzymes

By Elizabeth Pennisi Jun. 10, 2019 , 11:00 AM

On any given day, hospitals across t he United States burn through some 16,500 liters (35,000

pints) of donated blood for emergency surgeries, scheduled operations, and routine transfusions.

But recipients can’t take just any blood: For a transfusion to be successful, the patient and donor

blood types must be compatible. Now, researchers analyzing bacteria in the human gut have

discovered that microbes there produce two enzymes that can convert the common type A into a

more universally accepted type. If the process pans out, blood specialists suggest it could

revolutionize blood donation and transfusion.

“This is a first, and if these data can be replicated, it is certainly a major advance,” says Harvey

Klein, a blood transfusion expert at the National Institutes of Health’s Clinical Center in

Bethesda, Maryland, who was not involved with the work.

People typically have one of four blood types — A, B, AB, or O — defined by unusual sugar

molecules on the surfaces of their red blood cells. If a person with type A receives type B blood,

or vice versa, these molecules, called blood antigens, can cause the immune system to mount a

deadly attack on the red blood cells. But type O cells lack these antigens, making it possible to

transfuse that blood type into anyone. That makes this “universal” blood especi ally important in emergency rooms, where nurses and doctors may not have time to determine an accident

victim’s blood type .

“Around the United States and the rest of the world, there is a constant shortage,” says Mohandas

Narla, a red blood cell physiologist at the New York Blood Center in New York City.

To up the supply of universal blood, scientists have tried transforming th e second most common

blood, type A, by removing its “A -defining” antigens . But they’ve met with limited success, as

the known enzymes that can strip the red blood cell of t he offending sugars aren’t efficient

enough to do the job economically.

After 4 years of trying to improve on those enzymes, a team led by Stephen Withers, a chemical

biologist at the University of British Columbia (UBC) in Vancouver, Canada, decided to lo ok for

a better one among human gut bacteria. Some of these microbes latch onto the gut wall, where

they “eat” the sugar -protein combos called mucins that line it. Mucins’ sugars are similar to the

type -defining ones on red blood cells.

So UBC postdoc Pete r Rahfeld collected a human stool sample and isolated its DNA, which in

theory would include genes that encode the bacterial enzymes that digest mucins. Chopping this

DNA up and loading different pieces into copies of the commonly used lab

bacterium Escher ichia coli , the researchers monitored whether any of the microbes subsequently

produced proteins with the ability to remove A -defining sugars.

At first, they didn’t see anything promising. But when they tested two of the resulting enzymes at

once — adding th em to substances that would glow if the sugars were removed — the sugars

came right off . The enzymes also worked their magic in human blood. The enzymes originally

come from a gut bacterium ca lled Flavonifractor plautii , Rahfeld, Withers, and their colleagues

report today in Nature Microbiology . Tiny amounts added to a unit of type A blood could get rid

of the offending sugars, they found. “The findings are very promising in terms of their prac tical

utility,” Narla says. In the United States, type A blood makes up just under one -third of the

supply, meaning the availability of “universal” donor blood could almost double.

But Narla says more work is needed to ensure that all the offending A antig ens have been

removed, a problem in previous efforts. And Withers says researchers need to make sure the

microbial enzymes have not inadvertently altered anything else on the red blood cell that could

produce problems. For now, the researchers are focusing on only converting type A, as it’s more

common than type B blood. Having the ability to transform type A to type O, Withers says,

“would broaden our supply of blood and ease these shortages.”

Posted in:

• Health

doi:10.1126/science.aay3386