summary for chapters 22-23-24

Chapter 22:

Expert Intuition: When Can We Trust It?

Professional controversies bring out the worst in academics. Scientific journals occasionally publish exchanges, often beginning with someone’s critique of another’s research, followed by a reply and a rejoinder. I have always thought that these exchanges are a waste of time. Especially when the original critique is sharply worded, the reply and the rejoinder are often exercises in what I have called sarcasm for beginners and advanced sarcasm. The replies rarely concede anything to a biting critique, and it is almost unheard of for a rejoinder to admit that the original critique was misguided or erroneous in any way. On a few occasions I have responded to criticisms that I thought were grossly misleading, because a failure to respond can be interpreted as conceding error, but I have never found the hostile exchanges instructive. In search of another way to deal with disagreements, I have engaged in a few “adversarial collaborations,” in which scholars who disagree on the science agree to write a jointly authored paper on their differences, and sometimes conduct research together. In especially tense situations, the research is moderated by an arbiter.

My most satisfying and productive adversarial collaboration was with Gary Klein, the intellectual leader of an association of scholars and practitioners who do not like the kind of work I do. They call themselves students of Naturalistic Decision Making, or NDM, and mostly work in organizations where the"0%Љ ty often study how experts work. The N DMers adamantly reject the focus on biases in the heuristics and biases approach. They criticize this model as overly concerned with failures and driven by artificial experiments rather than by the study of real people doing things that matter. They are deeply skeptical about the value of using rigid algorithms to replace human judgment, and Paul Meehl is not among their heroes. Gary Klein has eloquently articulated this position over many years.

This is hardly the basis for a beautiful friendship, but there is more to the story. I had never believed that intuition is always misguided. I had also been a fan of Klein’s studies of expertise in firefighters since I first saw a draft of a paper he wrote in the 1970s, and was impressed by his book Sources of Power, much of which analyzes how experienced professionals develop intuitive skills. I invited him to join in an effort to map the boundary that separates the marvels of intuition from its flaws. He was intrigued by the idea and we went ahead with the project—with no certainty that it would succeed. We set out to answer a specific question: When can you trust an experienced professional who claims to have an intuition? It was obvious

that Klein would be more disposed to be trusting, and I would be more skeptical. But could we agree on principles for answering the general question?

Over seven or eight years we had many discussions, resolved many disagreements, almost blew up more than once, wrote many draft s, became friends, and eventually published a joint article with a title that tells the story: “Conditions for Intuitive Expertise: A Failure to Disagree.” Indeed, we did not encounter real issues on which we disagreed—but we did not really agree.

Marvels and Flaws

Malcolm Gladwell’s bestseller Blink appeared while Klein and I were working on the project, and it was reassuring to find ourselves in agreement about it. Gladwell’s book opens with the memorable story of art experts faced with an object that is described as a magnificent example of a kouros, a sculpture of a striding boy. Several of the experts had strong visceral reactions: they felt in their gut that the statue was a fake but were not able to articulate what it was about it that made them uneasy. Everyone who read the book—millions did—remembers that story as a triumph of intuition. The experts agreed that they knew the sculpture was a fake without knowing how they knew—the very definition of intuition. The story appears to imply that a systematic search for the cue that guided the experts would have failed, but Klein and I both rejected that conclusion. From our point of view, such an inquiry was needed, and if it had been conducted properly (which Klein knows how to do), it would probably have succeeded.

Although many readers of the kouros example were surely drawn to an almost magical view of expert intuition, Gladwell himself does not hold that position. In a later chapter he describes a massive failure of intuition: Americans elected President Harding, whose only qualification for the position was that he perfectly looked the part. Square jawed and tall, he was the perfect image of a strong and decisive leader. People voted for someone who looked strong and decisive without any other reason to believe that he was. An intuitive prediction of how Harding would perform as president arose from substituting one question for another. A reader of this book should expect such an intuition to be held with confidence.

Intuition as Recognition

The early experiences that shaped Klein’s views of intuition were starkly

different from mine. My thinking was formed by observing the illusion of validity in myself and by reading Paul Meehl’s demonstrations of the inferiority of clinical prediction. In contrast, Klein’s views were shaped by his early studies of fireground commanders (the leaders of firefighting teams). He followed them as they fought fires and later interviewed the leader about his thoughts as he made decisions. As Klein described it in our joint article, he and his collaborators

investigated how the commanders could make good decisions without comparing options. The initial hypothesis was that commanders would restrict their analysis to only a pair of options, but that hypothesis proved to be incorrect. In fact, the commanders usually generated only a single option, and that was all they needed. They could draw on the repertoire of patterns that they had compiled during more than a decade of both real and virtual experience to identify a plausible option, which they considered first. They evaluated this option by mentally simulating it to see if it would work in the situation they were facing.... If the course of action they were considering seemed appropriate, they would implement it. If it had shortcomings, they would modify it. If they could not easily modify it, they would turn to the next most plausible option and run through the same procedure until an acceptable course of action was found.

Klein elaborated this description into a theory of decision making that he called the recognition-primed decision (RPD) model, which applies to firefighters but also describes expertise in other domains, including chess. The process involves both System 1 and System 2. In the first phase, a tentative plan comes to mind by an automatic function of associative memory—System 1. The next phase is a deliberate process in which the plan is mentally simulated to check if it will work—an operation of System 2. The model of intuitive decision making as pattern recognition develops ideas presented some time ago by Herbert Simon, perhaps the only scholar who is recognized and admired as a hero and founding figure by all the competing clans and tribes in the study of decision making. I quoted Herbert Simon’s definition of intuition in the introduction, but it will make more sense when I repeat it now: “The situation has provided a cue; this cue has given the expert access to information stored in memory, and the information provides the answer. Intuition is nothing more and nothing less than recognition.”

This strong statement reduces the apparent magic of intuition to the everyday experience of memory. We marvel at the story of the firefighter

who has a sudden urge to escape a burning house just before it collapses, because the firefighter knows the danger intuitively, “without knowing how he knows.” However, we also do not know how we immediately know that a person we see as we enter a room is our friend Peter. The moral of Simon’s remark is that the mystery of knowing without knowing is not a distinctive feature of intuition; it is the norm of mental life.

Acquiring Skill

How does the information that supports intuition get “stored in memory”? Certain types of intuitions are acquired very quickly. We have inherited from our ancestors a great facility to learn when to be afraid. Indeed, one experience is often sufficient to establish a long-term aversion and fear. Many of us have the visceral memory of a single dubious dish tto hat still leaves us vaguely reluctant to return to a restaurant. All of us tense up when we approach a spot in which an unpleasant event occurred, even when there is no reason to expect it to happen again. For me, one such place is the ramp leading to the San Francisco airport, where years ago a driver in the throes of road rage followed me from the freeway, rolled down his window, and hurled obscenities at me. I never knew what caused his hatred, but I remember his voice whenever I reach that point on my way to the airport.

My memory of the airport incident is conscious and it fully explains the emotion that comes with it. On many occasions, however, you may feel uneasy in a particular place or when someone uses a particular turn of phrase without having a conscious memory of the triggering event. In hindsight, you will label that unease an intuition if it is followed by a bad experience. This mode of emotional learning is closely related to what happened in Pavlov’s famous conditioning experiments, in which the dogs learned to recognize the sound of the bell as a signal that food was coming. What Pavlov’s dogs learned can be described as a learned hope. Learned fears are even more easily acquired.

Fear can also be learned—quite easily, in fact—by words rather than by experience. The fireman who had the “sixth sense” of danger had certainly had many occasions to discuss and think about types of fires he was not involved in, and to rehearse in his mind what the cues might be and how he should react. As I remember from experience, a young platoon commander with no experience of combat will tense up while leading troops through a narrowing ravine, because he was taught to identify the terrain as favoring an ambush. Little repetition is needed for learning.

Emotional learning may be quick, but what we consider as “expertise”

usually takes a long time to develop. The acquisition of expertise in complex tasks such as high-level chess, professional basketball, or firefighting is intricate and slow because expertise in a domain is not a single skill but rather a large collection of miniskills. Chess is a good example. An expert player can understand a complex position at a glance, but it takes years to develop that level of ability. Studies of chess masters have shown that at least 10,000 hours of dedicated practice (about 6 years of playing chess 5 hours a day) are required to attain the highest levels of performance. During those hours of intense concentration, a serious chess player becomes familiar with thousands of configurations, each consisting of an arrangement of related pieces that can threaten or defend each other.

Learning high-level chess can be compared to learning to read. A first grader works hard at recognizing individual letters and assembling them into syllables and words, but a good adult reader perceives entire clauses. An expert reader has also acquired the ability to assemble familiar elements in a new pattern and can quickly “recognize” and correctly pronounce a word that she has never seen before. In chess, recurrent patterns of interacting pieces play the role of letters, and a chess position is a long word or a sentence.

A skilled reader who sees it for the first time will be able to read the opening stanza of Lewis Carroll’s “Jabberwocky” with perfect rhythm and intonation, as well as pleasure:

’Twas brillig, and the slithy toves Did gyre and gimble in the wabe: All mimsy were the borogoves, And the mome raths outgrabe.

Acquiring expertise in chess is harder and slower than learning to read because there are many more letters in the “alphabet” of chess and because the “words” consist of many letters. After thousands of hours of practice, however, chess masters are able to read a chess situation at a glance. The few moves that come to their mind are almost always strong and sometimes creative. They can deal with a “word” they have never encountered, and they can find a new way to interpret a familiar one.

The Environment of Skill

Klein and I quickly found that we agreed both on the nature of intuitive skill and on how it is acquired. We still needed to agree on our key question: When can you trust a self-confident professional who claims to have an intuition?

We eventually concluded that our disagreement was due in part to the fact that we had different experts in mind. Klein had spent much time with fireground commanders, clinical nurses, and other professionals who have real expertise. I had spent more time thinking about clinicians, stock pickers, and political scientists trying to make unsupportable long-term forecasts. Not surprisingly, his default attitude was trust and respect; mine was skepticism. He was more willing to trust experts who claim an intuition because, as he told me, true experts know the limits of their knowledge. I argued that there are many pseudo-experts who have no idea that they do not know what they are doing (the illusion of validity), and that as a general proposition subjective confidence is commonly too high and often uninformative.

Earlier I traced people’s confidence in a belief to two related impressions: cognitive ease and coherence. We are confident when the story we tell ourselves comes easily to mind, with no contradiction and no competing scenario. But ease and coherence do not guarantee that a belief held with confidence is true. The associative machine is set to suppress doubt and to evoke ideas and information that are compatible with the currently dominant story. A mind that follows WY SIATI will achieve high confidence much too easily by ignoring what it does not know. It is therefore not surprising that many of us are prone to have high confidence in unfounded intuitions. Klein and I eventually agreed on an important principle: the confidence that people have in their intuitions is not a reliable guide to their validity. In other words, do not trust anyone—including yourself—to tell you how much you should trust their judgment.

If subjective confidence is not to be trusted, how can we evaluate the probable validity of an intuitive judgment? When do judgments reflect true expertise? When do they display an illusion of validity? The answer comes from the two basic conditions for acquiring a skill:

an environment that is sufficiently regular to be predictable
an opportunity to learn these regularities through prolonged practice

When both these conditions are satisfied, intuitions are likely to be skilled. Chess is an extreme example of a regular environment, but bridge and

poker also provide robust statistical regularities that can support skill. Physicians, nurses, athletes, and firefighters also face complex but fundamentally orderly situations. The accurate intuitions that Gary Klein has described are due to highly valid cues that es the expert’s System 1 has learned to use, even if System 2 has not learned to name them. In contrast, stock pickers and political scientists who make long-term forecasts operate in a zero-validity environment. Their failures reflect the basic unpredictability of the events that they try to forecast.

Some environments are worse than irregular. Robin Hogarth described “wicked” environments, in which professionals are likely to learn the wrong lessons from experience. He borrows from Lewis Thomas the example of a physician in the early twentieth century who often had intuitions about patients who were about to develop typhoid. Unfortunately, he tested his hunch by palpating the patient’s tongue, without washing his hands between patients. When patient after patient became ill, the physician developed a sense of clinical infallibility. His predictions were accurate— but not because he was exercising professional intuition!

Meehl’s clinicians were not inept and their failure was not due to lack of talent. They performed poorly because they were assigned tasks that did not have a simple solution. The clinicians’ predicament was less extreme than the zero-validity environment of long-term political forecasting, but they operated in low-validity situations that did not allow high accuracy. We know this to be the case because the best statistical algorithms, although more accurate than human judges, were never very accurate. Indeed, the studies by Meehl and his followers never produced a “smoking gun” demonstration, a case in which clinicians completely missed a highly valid cue that the algorithm detected. An extreme failure of this kind is unlikely because human learning is normally efficient. If a strong predictive cue exists, human observers will find it, given a decent opportunity to do so. Statistical algorithms greatly outdo humans in noisy environments for two reasons: they are more likely than human judges to detect weakly valid cues and much more likely to maintain a modest level of accuracy by using such cues consistently.

It is wrong to blame anyone for failing to forecast accurately in an unpredictable world. However, it seems fair to blame professionals for believing they can succeed in an impossible task. Claims for correct intuitions in an unpredictable situation are self-delusional at best, sometimes worse. In the absence of valid cues, intuitive “hits” are due either to luck or to lies. If you find this conclusion surprising, you still have a lingering belief that intuition is magic. Remember this rule: intuition cannot

be trusted in the absence of stable regularities in the environment.

Feedback and Practice

Some regularities in the environment are easier to discover and apply than others. Think of how you developed your style of using the brakes on your car. As you were mastering the skill of taking curves, you gradually learned when to let go of the accelerator and when and how hard to use the brakes. Curves differ, and the variability you experienced while learning ensures that you are now ready to brake at the right time and strength for any curve you encounter. The conditions for learning this skill are ideal, because you receive immediate and unambiguous feedback every time you go around a bend: the mild reward of a comfortable turn or the mild punishment of some difficulty in handling the car if you brake either too hard or not quite hard enough. The situations that face a harbor pilot maneuvering large ships are no less regular, but skill is much more difficult to acquire by sheer experience because of the long delay between actions and their manoticeable outcomes. Whether professionals have a chance to develop intuitive expertise depends essentially on the quality and speed of feedback, as well as on sufficient opportunity to practice.

Expertise is not a single skill; it is a collection of skills, and the same professional may be highly expert in some of the tasks in her domain while remaining a novice in others. By the time chess players become experts, they have “seen everything” (or almost everything), but chess is an exception in this regard. Surgeons can be much more proficient in some operations than in others. Furthermore, some aspects of any professional’s tasks are much easier to learn than others. Psychotherapists have many opportunities to observe the immediate reactions of patients to what they say. The feedback enables them to develop the intuitive skill to find the words and the tone that will calm anger, forge confidence, or focus the patient’s attention. On the other hand, therapists do not have a chance to identify which general treatment approach is most suitable for different patients. The feedback they receive from their patients’ long-term outcomes is sparse, delayed, or (usually) nonexistent, and in any case too ambiguous to support learning from experience.

Among medical specialties, anesthesiologists benefit from good feedback, because the effects of their actions are likely to be quickly evident. In contrast, radiologists obtain little information about the accuracy of the diagnoses they make and about the pathologies they fail to detect. Anesthesiologists are therefore in a better position to develop useful

intuitive skills. If an anesthesiologist says, “I have a feeling something is wrong,” everyone in the operating room should be prepared for an emergency.

Here again, as in the case of subjective confidence, the experts may not know the limits of their expertise. An experienced psychotherapist knows that she is skilled in working out what is going on in her patient’s mind and that she has good intuitions about what the patient will say next. It is tempting for her to conclude that she can also anticipate how well the patient will do next year, but this conclusion is not equally justified. Short- term anticipation and long-term forecasting are different tasks, and the therapist has had adequate opportunity to learn one but not the other. Similarly, a financial expert may have skills in many aspects of his trade but not in picking stocks, and an expert in the Middle East knows many things but not the future. The clinical psychologist, the stock picker, and the pundit do have intuitive skills in some of their tasks, but they have not learned to identify the situations and the tasks in which intuition will betray them. The unrecognized limits of professional skill help explain why experts are often overconfident.

Evaluating Validity

At the end of our journey, Gary Klein and I agreed on a general answer to our initial question: When can you trust an experienced professional who claims to have an intuition? Our conclusion was that for the most part it is possible to distinguish intuitions that are likely to be valid from those that are likely to be bogus. As in the judgment of whether a work of art is genuine or a fake, you will usually do better by focusing on its provenance than by looking at the piece itself. If the environment is sufficiently regular and if the judge has had a chance to learn its regularities, the associative machinery will recognize situations and generate quick and accurate predictions and decisions. You can trust someone’s intuitions if these conditions are met.

Unfortunately, associativentu memory also generates subjectively compelling intuitions that are false. Anyone who has watched the chess progress of a talented youngster knows well that skill does not become perfect all at once, and that on the way to near perfection some mistakes are made with great confidence. When evaluating expert intuition you should always consider whether there was an adequate opportunity to learn the cues, even in a regular environment.

In a less regular, or low-validity, environment, the heuristics of judgment are invoked. System 1 is often able to produce quick answers to difficult

questions by substitution, creating coherence where there is none. The question that is answered is not the one that was intended, but the answer is produced quickly and may be sufficiently plausible to pass the lax and lenient review of System 2. You may want to forecast the commercial future of a company, for example, and believe that this is what you are judging, while in fact your evaluation is dominated by your impressions of the energy and competence of its current executives. Because substitution occurs automatically, you often do not know the origin of a judgment that you (your System 2) endorse and adopt. If it is the only one that comes to mind, it may be subjectively undistinguishable from valid judgments that you make with expert confidence. This is why subjective confidence is not a good diagnostic of accuracy: judgments that answer the wrong question can also be made with high confidence.

You may be asking, Why didn’t Gary Klein and I come up immediately with the idea of evaluating an expert’s intuition by assessing the regularity of the environment and the expert’s learning history—mostly setting aside the expert’s confidence? And what did we think the answer could be? These are good questions because the contours of the solution were apparent from the beginning. We knew at the outset that fireground commanders and pediatric nurses would end up on one side of the boundary of valid intuitions and that the specialties studied by Meehl would be on the other, along with stock pickers and pundits.

It is difficult to reconstruct what it was that took us years, long hours of discussion, endless exchanges of draft s and hundreds of e-mails negotiating over words, and more than once almost giving up. But this is what always happens when a project ends reasonably well: once you understand the main conclusion, it seems it was always obvious.

As the title of our article suggests, Klein and I disagreed less than we had expected and accepted joint solutions of almost all the substantive issues that were raised. However, we also found that our early differences were more than an intellectual disagreement. We had different attitudes, emotions, and tastes, and those changed remarkably little over the years. This is most obvious in the facts that we find amusing and interesting. Klein still winces when the word bias is mentioned, and he still enjoys stories in which algorithms or formal procedures lead to obviously absurd decisions. I tend to view the occasional failures of algorithms as opportunities to improve them. On the other hand, I find more pleasure than Klein does in the come-uppance of arrogant experts who claim intuitive powers in zero- validity situations. In the long run, however, finding as much intellectual agreement as we did is surely more important than the persistent emotional differences that remained.

Speaking of Expert Intuition

“How much expertise does she have in this particular task? How much practice has she had?”

“Does he really believe that the environment of start-ups is sufficiently regular to justify an intuition that goes against the base rates?”

“She is very confident in her decision, but subjective confidence is a poor index of the accuracy of a judgment.”

“Did he really have an opportunity to learn? How quick and how clear was the feedback he received on his judgments?”

Chapter 23:

The Outside View

A few years after my collaboration with Amos began, I convinced some officials in the Israeli Ministry of Education of the need for a curriculum to teach judgment and decision making in high schools. The team that I assembled to design the curriculum and write a textbook for it included several experienced teachers, some of my psychology students, and Seymour Fox, then dean of the Hebrew University’s School of Education, who was an expert in curriculum development.

After meeting every Friday afternoon for about a year, we had constructed a detailed outline of the syllabus, had written a couple of chapters, and had run a few sample lessons in the classroom. We all felt that we had made good progress. One day, as we were discussing procedures for estimating uncertain quantities, the idea of conducting an exercise occurred to me. I asked everyone to write down an estimate of how long it would take us to submit a finished draft of the textbook to the Ministry of Education. I was following a procedure that we already planned to incorporate into our curriculum: the proper way to elicit information from a group is not by starting with a public discussion but by confidentially collecting each person’s judgment. This procedure makes better use of the knowledge available to members of the group than the common practice of open discussion. I collected the estimates and jotted the results on the blackboard. They were narrowly centered around two years; the low end was one and a half, the high end two and a half years.

Then I had another idea. I turned to Seymour, our curriculum expert, and asked whether he could think of other teams similar to ours that had developed a curriculum from scratch. This was a time when several pedagogical innovations like “new math” had been introduced, and Seymour said he could think of quite a few. I then asked whether he knew the history of these teams in some detail, and it turned out that he was familiar with several. I asked him to think of these teams when they had made as much progress as we had. How long, from that point, did it take them to finish their textbook projects?

He fell silent. When he finally spoke, it seemed to me that he was blushing, embarrassed by his own answer: “You know, I never realized this before, but in fact not all the teams at a stage comparable to ours ever did complete their task. A substantial fraction of the teams ended up failing to finish the job.”

This was worrisome; we had never considered the possibility that we might fail. My anxiety rising, I asked how large he estimated that fraction was. Rw l sidering t20;About 40%,” he answered. By now, a pall of gloom

was falling over the room. The next question was obvious: “Those who finished,” I asked. “How long did it take them?” “I cannot think of any group that finished in less than seven years,” he replied, “nor any that took more than ten.”

I grasped at a straw: “When you compare our skills and resources to those of the other groups, how good are we? How would you rank us in comparison with these teams?” Seymour did not hesitate long this time. “We’re below average,” he said, “but not by much.” This came as a complete surprise to all of us—including Seymour, whose prior estimate had been well within the optimistic consensus of the group. Until I prompted him, there was no connection in his mind between his knowledge of the history of other teams and his forecast of our future.

Our state of mind when we heard Seymour is not well described by stating what we “knew.” Surely all of us “knew” that a minimum of seven years and a 40% chance of failure was a more plausible forecast of the fate of our project than the numbers we had written on our slips of paper a few minutes earlier. But we did not acknowledge what we knew. The new forecast still seemed unreal, because we could not imagine how it could take so long to finish a project that looked so manageable. No crystal ball was available to tell us the strange sequence of unlikely events that were in our future. All we could see was a reasonable plan that should produce a book in about two years, conflicting with statistics indicating that other teams had failed or had taken an absurdly long time to complete their mission. What we had heard was base-rate information, from which we should have inferred a causal story: if so many teams failed, and if those that succeeded took so long, writing a curriculum was surely much harder than we had thought. But such an inference would have conflicted with our direct experience of the good progress we had been making. The statistics that Seymour provided were treated as base rates normally are —noted and promptly set aside.

We should have quit that day. None of us was willing to invest six more years of work in a project with a 40% chance of failure. Although we must have sensed that persevering was not reasonable, the warning did not provide an immediately compelling reason to quit. After a few minutes of desultory debate, we gathered ourselves together and carried on as if nothing had happened. The book was eventually completed eight(!) years later. By that time I was no longer living in Israel and had long since ceased to be part of the team, which completed the task after many unpredictable vicissitudes. The initial enthusiasm for the idea in the Ministry of Education had waned by the time the text was delivered and it was never used.

This embarrassing episode remains one of the most instructive experiences of my professional life. I eventually learned three lessons from

it. The first was immediately apparent: I had stumbled onto a distinction between two profoundly different approaches to forecasting, which Amos and I later labeled the inside view and the outside view. The second lesson was that our initial forecasts of about two years for the completion of the project exhibited a planning fallacy. Our estimates were closer to a best- case scenario than to a realistic assessment. I was slower to accept the third lesson, which I call irrational perseverance: the folly we displayed that day in failing to abandon the project. Facing a choice, we gave up rationality rather than give up the enterprise.

Drawn to the Inside View

On that long-ago Friday, our curriculum expert made two judgments about the same problem and arrived at very different answers. The inside view is the one that all of us, including Seymour, spontaneously adopted to assess the future of our project. We focused on our specific circumstances and searched for evidence in our own experiences. We had a sketchy plan: we knew how many chapters we were going to write, and we had an idea of how long it had taken us to write the two that we had already done. The more cautious among us probably added a few months to their estimate as a margin of error.

Extrapolating was a mistake. We were forecasting based on the information in front of us—WYSIATI—but the chapters we wrote first were probably easier than others, and our commitment to the project was probably then at its peak. But the main problem was that we failed to allow for what Donald Rumsfeld famously called the “unknown unknowns.” There was no way for us to foresee, that day, the succession of events that would cause the project to drag out for so long. The divorces, the illnesses, the crises of coordination with bureaucracies that delayed the work could not be anticipated. Such events not only cause the writing of chapters to slow down, they also produce long periods during which little or no progress is made at all. The same must have been true, of course, for the other teams that Seymour knew about. The members of those teams were also unable to imagine the events that would cause them to spend seven years to finish, or ultimately fail to finish, a project that they evidently had thought was very feasible. Like us, they did not know the odds they were facing. There are many ways for any plan to fail, and although most of them are too improbable to be anticipated, the likelihood that something will go wrong in a big project is high.

The second question I asked Seymour directed his attention away from us and toward a class of similar cases. Seymour estimated the base rate of success in that reference class: 40% failure and seven to ten years for

completion. His informal survey was surely not up to scientific standards of evidence, but it provided a reasonable basis for a baseline prediction: the prediction you make about a case if you know nothing except the category to which it belongs. As we saw earlier, the baseline prediction should be the anchor for further adjustments. If you are asked to guess the height of a woman about whom you know only that she lives in New York City, your baseline prediction is your best guess of the average height of women in the city. If you are now given case-specific information, for example that the woman’s son is the starting center of his high school basketball team, you will adjust your estimate away from the mean in the appropriate direction. Seymour’s comparison of our team to others suggested that the forecast of our outcome was slightly worse than the baseline prediction, which was already grim.

The spectacular accuracy of the outside-view forecast in our problem was surely a fluke and should not count as evidence for the validity of the outside view. The argument for the outside view should be made on general grounds: if the reference class is properly chosen, the outside view will give an indication of where the ballpark is, and it may suggest, as it did in our case, that the inside-view forecasts are not even close to it.

For a psychologist, the discrepancy between Seymour’s two judgments is striking. He had in his head all the knowledge required to estimate the statistics of an appropriate reference class, but he reached his initial estimate without ever using that knowledge. Seymour’s forecast from his insidethaa view was not an adjustment from the baseline prediction, which had not come to his mind. It was based on the particular circumstances of our efforts. Like the participants in the Tom W experiment, Seymour knew the relevant base rate but did not think of applying it.

Unlike Seymour, the rest of us did not have access to the outside view and could not have produced a reasonable baseline prediction. It is noteworthy, however, that we did not feel we needed information about other teams to make our guesses. My request for the outside view surprised all of us, including me! This is a common pattern: people who have information about an individual case rarely feel the need to know the statistics of the class to which the case belongs.

When we were eventually exposed to the outside view, we collectively ignored it. We can recognize what happened to us; it is similar to the experiment that suggested the futility of teaching psychology. When they made predictions about individual cases about which they had a little information (a brief and bland interview), Nisbett and Borgida’s students completely neglected the global results they had just learned. “Pallid” statistical information is routinely discarded when it is incompatible with

one’s personal impressions of a case. In the competition with the inside view, the outside view doesn’t stand a chance.

The preference for the inside view sometimes carries moral overtones. I once asked my cousin, a distinguished lawyer, a question about a reference class: “What is the probability of the defendant winning in cases like this one?” His sharp answer that “every case is unique” was accompanied by a look that made it clear he found my question inappropriate and superficial. A proud emphasis on the uniqueness of cases is also common in medicine, in spite of recent advances in evidence-based medicine that point the other way. Medical statistics and baseline predictions come up with increasing frequency in conversations between patients and physicians. However, the remaining ambivalence about the outside view in the medical profession is expressed in concerns about the impersonality of procedures that are guided by statistics and checklists.

The Planning Fallacy

In light of both the outside-view forecast and the eventual outcome, the original estimates we made that Friday afternoon appear almost delusional. This should not come as a surprise: overly optimistic forecasts of the outcome of projects are found everywhere. Amos and I coined the term planning fallacy to describe plans and forecasts that

are unrealistically close to best-case scenarios
could be improved by consulting the statistics of similar cases

Examples of the planning fallacy abound in the experiences of individuals, governments, and businesses. The list of horror stories is endless.

In July 1997, the proposed new Scottish Parliament building in Edinburgh was estimated to cost up to £40 million. By June 1999, the budget for the building was £109 million. In April 2000, legislators imposed a £195 million “cap on costs.” By November 2001, they demanded an estimate of “final cost,” which was set at £241 million. That estimated final cost rose twice in 2002, ending the year at

£294.6 million. It rose three times more in 2003, reaching £375.8 million by June. The building was finally comanspleted in 2004 at an ultimate cost of roughly £431 million.
A 2005 study examined rail projects undertaken worldwide between 1969 and 1998. In more than 90% of the cases, the number of passengers projected to use the system was overestimated. Even though these passenger shortfalls were widely publicized, forecasts did not improve over those thirty years; on average, planners overestimated how many people would use the new rail projects by 106%, and the average cost overrun was 45%. As more evidence accumulated, the experts did not become more reliant on it.

In 2002, a survey of American homeowners who had remodeled their kitchens found that, on average, they had expected the job to cost $18,658; in fact, they ended up paying an average of $38,769.

The optimism of planners and decision makers is not the only cause of overruns. Contractors of kitchen renovations and of weapon systems readily admit (though not to their clients) that they routinely make most of their profit on additions to the original plan. The failures of forecasting in these cases reflect the customers’ inability to imagine how much their wishes will escalate over time. They end up paying much more than they would if they had made a realistic plan and stuck to it.

Errors in the initial budget are not always innocent. The authors of unrealistic plans are often driven by the desire to get the plan approved— whether by their superiors or by a client—supported by the knowledge that projects are rarely abandoned unfinished merely because of overruns in costs or completion times. In such cases, the greatest responsibility for avoiding the planning fallacy lies with the decision makers who approve the plan. If they do not recognize the need for an outside view, they commit a planning fallacy.

Mitigating the Planning Fallacy

The diagnosis of and the remedy for the planning fallacy have not changed since that Friday afternoon, but the implementation of the idea has come a long way. The renowned Danish planning expert Bent Flyvbjerg, now at Oxford University, offered a forceful summary:

The prevalent tendency to underweight or ignore distributional information is perhaps the major source of error in forecasting. Planners should therefore make every effort to frame the

forecasting problem so as to facilitate utilizing all the distributional information that is available.

This may be considered the single most important piece of advice regarding how to increase accuracy in forecasting through improved methods. Using such distributional information from other ventures similar to that being forecasted is called taking an “outside view” and is the cure to the planning fallacy.

The treatment for the planning fallacy has now acquired a technical name,reference class forecasting, and Flyvbjerg has applied it to transportation projects in several countries. The outside view is implemented by using a large database, which provides information on both plans and outcomes for hundreds of projects all over the world, and can be used to provide statistical information about the likely overruns of cost and time, and about the likely underperformance of projects of different types.

The forecasting method that Flyvbjerg applies is similar to the practices recommended for overcoming base-rate neglect:

  1. Identify an appropriate reference class (kitchen renovations, large railway projects, etc.).

  2. Obtain the statistics of the reference class (in terms of cost per mile of railway, or of the percentage by which expenditures exceeded budget). Use the statistics to generate a baseline prediction.

  3. Use specific information about the case to adjust the baseline prediction, if there are particular reasons to expect the optimistic bias to be more or less pronounced in this project than in others of the same type.

Flyvbjerg’s analyses are intended to guide the authorities that commission public projects, by providing the statistics of overruns in similar projects. Decision makers need a realistic assessment of the costs and benefits of a proposal before making the final decision to approve it. They may also wish to estimate the budget reserve that they need in anticipation of overruns, although such precautions often become self-fulfilling prophecies. As one official told Flyvbjerg, “A budget reserve is to contractors as red meat is to lions, and they will devour it.”

Organizations face the challenge of controlling the tendency of executives competing for resources to present overly optimistic plans. A well-run organization will reward planners for precise execution and

penalize them for failing to anticipate difficulties, and for failing to allow for difficulties that they could not have anticipated—the unknown unknowns.

Decisions and Errors

That Friday afternoon occurred more than thirty years ago. I often thought about it and mentioned it in lectures several times each year. Some of my friends got bored with the story, but I kept drawing new lessons from it. Almost fifteen years after I first reported on the planning fallacy with Amos, I returned to the topic with Dan Lovallo. Together we sketched a theory of decision making in which the optimistic bias is a significant source of risk taking. In the standard rational model of economics, people take risks because the odds are favorable—they accept some probability of a costly failure because the probability of success is sufficient. We proposed an alternative idea.

When forecasting the outcomes of risky projects, executives too easily fall victim to the planning fallacy. In its grip, they make decisions based on delusional optimism rather than on a rational weighting of gains, losses, and probabilities. They overestimate benefits and underestimate costs. They spin scenarios of success while overlooking the potential for mistakes and miscalculations. As a result, they pursue initiatives that are unlikely to come in on budget or on time or to deliver the expected returns —or even to be completed.

In this view, people often (but not always) take on risky projects because they are overly optimistic about the odds they face. I will return to this idea several times in this book—it probably contributes to an explanation of why people litigate, why they start wars, and why they open small businesses.

Failing a Test

For many years, I thought that the main point of the curriculum story was what I had learned about my friend Seymour: that his best guess about the future of our project was not informed by what he knew about similar projects. I came off quite well in my telling of the story, ir In which I had the role of clever questioner and astute psychologist. I only recently realized that I had actually played the roles of chief dunce and inept leader.

The project was my initiative, and it was therefore my responsibility to ensure that it made sense and that major problems were properly discussed by the team, but I failed that test. My problem was no longer the planning fallacy. I was cured of that fallacy as soon as I heard Seymour’s statistical summary. If pressed, I would have said that our earlier estimates

had been absurdly optimistic. If pressed further, I would have admitted that we had started the project on faulty premises and that we should at least consider seriously the option of declaring defeat and going home. But nobody pressed me and there was no discussion; we tacitly agreed to go on without an explicit forecast of how long the effort would last. This was easy to do because we had not made such a forecast to begin with. If we had had a reasonable baseline prediction when we started, we would not have gone into it, but we had already invested a great deal of effort—an instance of the sunk-cost fallacy, which we will look at more closely in the next part of the book. It would have been embarrassing for us—especially for me—to give up at that point, and there seemed to be no immediate reason to do so. It is easier to change directions in a crisis, but this was not a crisis, only some new facts about people we did not know. The outside view was much easier to ignore than bad news in our own effort. I can best describe our state as a form of lethargy—an unwillingness to think about what had happened. So we carried on. There was no further attempt at rational planning for the rest of the time I spent as a member of the team —a particularly troubling omission for a team dedicated to teaching rationality. I hope I am wiser today, and I have acquired a habit of looking for the outside view. But it will never be the natural thing to do.

Speaking of the Outside View

“He’s taking an inside view. He should forget about his own case and look for what happened in other cases.”

“She is the victim of a planning fallacy. She’s assuming a best- case scenario, but there are too many different ways for the plan to fail, and she cannot foresee them all.”

“Suppose you did not know a thing about this particular legal case, only that it involves a malpractice claim by an individual against a surgeon. What would be your baseline prediction? How many of these cases succeed in court? How many settle? What are the amounts? Is the case we are discussing stronger or weaker than similar claims?”

“We are making an additional investment because we do not

want to admit failure. This is an instance of the sunk-cost fallacy.”


Chapter 24:

The Engine of Capitalism

The planning fallacy is only one of the manifestations of a pervasive optimistic bias. sid to adtions of aMost of us view the world as more benign than it really is, our own attributes as more favorable than they truly are, and the goals we adopt as more achievable than they are likely to be. We also tend to exaggerate our ability to forecast the future, which fosters optimistic overconfidence. In terms of its consequences for decisions, the optimistic bias may well be the most significant of the cognitive biases. Because optimistic bias can be both a blessing and a risk, you should be both happy and wary if you are temperamentally optimistic.

Optimists

Optimism is normal, but some fortunate people are more optimistic than the rest of us. If you are genetically endowed with an optimistic bias, you hardly need to be told that you are a lucky person—you already feel fortunate. An optimistic attitude is largely inherited, and it is part of a general disposition for well-being, which may also include a preference for seeing the bright side of everything. If you were allowed one wish for your child, seriously consider wishing him or her optimism. Optimists are normally cheerful and happy, and therefore popular; they are resilient in adapting to failures and hardships, their chances of clinical depression are reduced, their immune system is stronger, they take better care of their health, they feel healthier than others and are in fact likely to live longer. A study of people who exaggerate their expected life span beyond actuarial predictions showed that they work longer hours, are more optimistic about their future income, are more likely to remarry after divorce (the classic “triumph of hope over experience”), and are more prone to bet on individual stocks. Of course, the blessings of optimism are offered only to individuals who are only mildly biased and who are able to “accentuate the positive” without losing track of reality.

Optimistic individuals play a disproportionate role in shaping our lives. Their decisions make a difference; they are the inventors, the entrepreneurs, the political and military leaders—not average people. They got to where they are by seeking challenges and taking risks. They are talented and they have been lucky, almost certainly luckier than they acknowledge. They are probably optimistic by temperament; a survey of founders of small businesses concluded that entrepreneurs are more sanguine than midlevel managers about life in general. Their experiences of success have confirmed their faith in their judgment and in their ability to

control events. Their self-confidence is reinforced by the admiration of others. This reasoning leads to a hypothesis: the people who have the greatest influence on the lives of others are likely to be optimistic and overconfident, and to take more risks than they realize.

The evidence suggests that an optimistic bias plays a role—sometimes the dominant role—whenever individuals or institutions voluntarily take on significant risks. More often than not, risk takers underestimate the odds they face, and do invest sufficient effort to find out what the odds are. Because they misread the risks, optimistic entrepreneurs often believe they are prudent, even when they are not. Their confidence in their future success sustains a positive mood that helps them obtain resources from others, raise the morale of their employees, and enhance their prospects of prevailing. When action is needed, optimism, even of the mildly delusional variety, may be a good thing.

Entrepreneurial Delusions

The chances that a small business will thesurvive for five years in the United States are about 35%. But the individuals who open such businesses do not believe that the statistics apply to them. A survey found that American entrepreneurs tend to believe they are in a promising line of business: their average estimate of the chances of success for “any business like yours” was 60%—almost double the true value. The bias was more glaring when people assessed the odds of their own venture. Fully 81% of the entrepreneurs put their personal odds of success at 7 out of 10 or higher, and 33% said their chance of failing was zero.

The direction of the bias is not surprising. If you interviewed someone who recently opened an Italian restaurant, you would not expect her to have underestimated her prospects for success or to have a poor view of her ability as a restaurateur. But you must wonder: Would she still have invested money and time if she had made a reasonable effort to learn the odds—or, if she did learn the odds (60% of new restaurants are out of business after three years), paid attention to them? The idea of adopting the outside view probably didn’t occur to her.

One of the benefits of an optimistic temperament is that it encourages persistence in the face of obstacles. But persistence can be costly. An impressive series of studies by Thomas Åstebro sheds light on what happens when optimists receive bad news. He drew his data from a Canadian organization—the Inventor’s Assistance Program—which

collects a small fee to provide inventors with an objective assessment of the commercial prospects of their idea. The evaluations rely on careful ratings of each invention on 37 criteria, including need for the product, cost of production, and estimated trend of demand. The analysts summarize their ratings by a letter grade, where D and E predict failure—a prediction made for over 70% of the inventions they review. The forecasts of failure are remarkably accurate: only 5 of 411 projects that were given the lowest grade reached commercialization, and none was successful.

Discouraging news led about half of the inventors to quit after receiving a grade that unequivocally predicted failure. However, 47% of them continued development efforts even after being told that their project was hopeless, and on average these persistent (or obstinate) individuals doubled their initial losses before giving up. Significantly, persistence after discouraging advice was relatively common among inventors who had a high score on a personality measure of optimism—on which inventors generally scored higher than the general population. Overall, the return on private invention was small, “lower than the return on private equity and on high-risk securities.” More generally, the financial benefits of self- employment are mediocre: given the same qualifications, people achieve higher average returns by selling their skills to employers than by setting out on their own. The evidence suggests that optimism is widespread, stubborn, and costly.

Psychologists have confirmed that most people genuinely believe that they are superior to most others on most desirable traits—they are willing to bet small amounts of money on these beliefs in the laboratory. In the market, of course, beliefs in one’s superiority have significant consequences. Leaders of large businesses sometimes make huge bets in expensive mergers and acquisitions, acting on the mistaken belief that they can manage the assets of another company better than its current owners do. The stock market commonly responds by downgrading the value of the acquiring firm, because experience has shown that efforts to integrate large firms fail more often than they succeed. The misguided acquisitions have been explained by a “hubris hypothesis”: the eiv xecutives of the acquiring firm are simply less competent than they think they are.

The economists Ulrike Malmendier and Geoffrey Tate identified optimistic CEOs by the amount of company stock that they owned personally and observed that highly optimistic leaders took excessive risks. They assumed debt rather than issue equity and were more likely than others to “overpay for target companies and undertake value- destroying mergers.” Remarkably, the stock of the acquiring company suffered substantially more in mergers if the CEO was overly optimistic by

the authors’ measure. The stock market is apparently able to identify overconfident CEOs. This observation exonerates the CEOs from one accusation even as it convicts them of another: the leaders of enterprises who make unsound bets do not do so because they are betting with other people’s money. On the contrary, they take greater risks when they personally have more at stake. The damage caused by overconfident CEOs is compounded when the business press anoints them as celebrities; the evidence indicates that prestigious press awards to the CEO are costly to stockholders. The authors write, “We find that firms with award-winning CEOs subsequently underperform, in terms both of stock and of operating performance. At the same time, CEO compensation increases, CEOs spend more time on activities outside the company such as writing books and sitting on outside boards, and they are more likely to engage in earnings management.”

Many years ago, my wife and I were on vacation on Vancouver Island, looking for a place to stay. We found an attractive but deserted motel on a little-traveled road in the middle of a forest. The owners were a charming young couple who needed little prompting to tell us their story. They had been schoolteachers in the province of Alberta; they had decided to change their life and used their life savings to buy this motel, which had been built a dozen years earlier. They told us without irony or self- consciousness that they had been able to buy it cheap, “because six or seven previous owners had failed to make a go of it.” They also told us about plans to seek a loan to make the establishment more attractive by building a restaurant next to it. They felt no need to explain why they expected to succeed where six or seven others had failed. A common thread of boldness and optimism links businesspeople, from motel owners to superstar CEOs.

The optimistic risk taking of entrepreneurs surely contributes to the economic dynamism of a capitalistic society, even if most risk takers end up disappointed. However, Marta Coelho of the London School of Economics has pointed out the difficult policy issues that arise when founders of small businesses ask the government to support them in decisions that are most likely to end badly. Should the government provide loans to would-be entrepreneurs who probably will bankrupt themselves in a few years? Many behavioral economists are comfortable with the “libertarian paternalistic” procedures that help people increase their savings rate beyond what they would do on their own. The question of whether and how government should support small business does not have

an equally satisfying answer.

Competition Neglect

It is tempting to explain entrepreneurial optimism by wishful thinking, but emotion is only part of the story. Cognitive biases play an important role, notably the System 1 feature WYSIATI.

We focus on our goal, anchor on our plan, and neglect relevant base rates, exposing ourselves to tnesehe planning fallacy.
We focus on what we want to do and can do, neglecting the plans and skills of others.

Both in explaining the past and in predicting the future, we focus on the causal role of skill and neglect the role of luck. We are therefore prone to an illusion of control.
We focus on what we know and neglect what we do not know, which makes us overly confident in our beliefs.

The observation that “90% of drivers believe they are better than average” is a well-established psychological finding that has become part of the culture, and it often comes up as a prime example of a more general above-average effect. However, the interpretation of the finding has changed in recent years, from self-aggrandizement to a cognitive bias. Consider these two questions:

Are you a good driver?
Are you better than average as a driver?

The first question is easy and the answer comes quickly: most drivers say yes. The second question is much harder and for most respondents almost impossible to answer seriously and correctly, because it requires an assessment of the average quality of drivers. At this point in the book it comes as no surprise that people respond to a difficult question by answering an easier one. They compare themselves to the average without ever thinking about the average. The evidence for the cognitive interpretation of the above-average effect is that when people are asked about a task they find difficult (for many of us this could be “Are you better than average in starting conversations with strangers?”), they readily rate themselves as below average. The upshot is that people tend to be overly

optimistic about their relative standing on any activity in which they do moderately well.

I have had several occasions to ask founders and participants in innovative start-ups a question: To what extent will the outcome of your effort depend on what you do in your firm? This is evidently an easy question; the answer comes quickly and in my small sample it has never been less than 80%. Even when they are not sure they will succeed, these bold people think their fate is almost entirely in their own hands. They are surely wrong: the outcome of a start-up depends as much on the achievements of its competitors and on changes in the market as on its own efforts. However, WY SIATI plays its part, and entrepreneurs naturally focus on what they know best—their plans and actions and the most immediate threats and opportunities, such as the availability of funding. They know less about their competitors and therefore find it natural to imagine a future in which the competition plays little part.

Colin Camerer and Dan Lovallo, who coined the concept of competition neglect, illustrated it with a quote from the then chairman of Disney Studios. Asked why so many expensive big-budget movies are released on the same days (such as Memorial Day and Independence Day), he replied:

Hubris. Hubris. If you only think about your own business, you think, “I’ve got a good story department, I’ve got a good marketing department, we’re going to go out and do this.” And you don’t think that everybody else is thinking the same way. In a given weekend in a year you’ll have five movies open, and there’s certainly not enough people to go around. re

The candid answer refers to hubris, but it displays no arrogance, no conceit of superiority to competing studios. The competition is simply not part of the decision, in which a difficult question has again been replaced by an easier one. The question that needs an answer is this: Considering what others will do, how many people will see our film? The question the studio executives considered is simpler and refers to knowledge that is most easily available to them: Do we have a good film and a good organization to market it? The familiar System 1 processes of WY SIATI and substitution produce both competition neglect and the above-average effect. The consequence of competition neglect is excess entry: more competitors enter the market than the market can profitably sustain, so their average outcome is a loss. The outcome is disappointing for the typical entrant in the market, but the effect on the economy as a whole could well be positive. In fact, Giovanni Dosi and Dan Lovallo call

entrepreneurial firms that fail but signal new markets to more qualified competitors “optimistic martyrs”—good for the economy but bad for their investors.

Overconfidence

For a number of years, professors at Duke University conducted a survey in which the chief financial officers of large corporations estimated the returns of the Standard & Poor’s index over the following year. The Duke scholars collected 11,600 such forecasts and examined their accuracy. The conclusion was straightforward: financial officers of large corporations had no clue about the short-term future of the stock market; the correlation between their estimates and the true value was slightly less than zero! When they said the market would go down, it was slightly more likely than not that it would go up. These findings are not surprising. The truly bad news is that the CFOs did not appear to know that their forecasts were worthless.

In addition to their best guess about S&P returns, the participants provided two other estimates: a value that they were 90% sure would be too high, and one that they were 90% sure would be too low. The range between the two values is called an “80% confidence interval” and outcomes that fall outside the interval are labeled “surprises.” An individual who sets confidence intervals on multiple occasions expects about 20% of the outcomes to be surprises. As frequently happens in such exercises, there were far too many surprises; their incidence was 67%, more than 3 times higher than expected. This shows that CFOs were grossly overconfident about their ability to forecast the market. Overconfidence is another manifestation of WYSIATI: when we estimate a quantity, we rely on information that comes to mind and construct a coherent story in which the estimate makes sense. Allowing for the information that does not come to mind—perhaps because one never knew it—is impossible.

The authors calculated the confidence intervals that would have reduced the incidence of surprises to 20%. The results were striking. To maintain the rate of surprises at the desired level, the CFOs should have said, year after year, “There is an 80% chance that the S&P return next year will be between –10% and +30%.” The confidence interval that properly reflects the CFOs’ knowledge (more precisely, their ignorance) is more than 4 times wider than the intervals they actually stated.

Social psychology comes into the picture here, because the answer that a truthful CFO would offer is plainly ridiculous. A CFO who informs his colleagues that “th%">iere is a good chance that the S&P returns will be

between –10% and +30%” can expect to be laughed out of the room. The wide confidence interval is a confession of ignorance, which is not socially acceptable for someone who is paid to be knowledgeable in financial matters. Even if they knew how little they know, the executives would be penalized for admitting it. President Truman famously asked for a “one- armed economist” who would take a clear stand; he was sick and tired of economists who kept saying, “On the other hand...”

Organizations that take the word of overconfident experts can expect costly consequences. The study of CFOs showed that those who were most confident and optimistic about the S&P index were also overconfident and optimistic about the prospects of their own firm, which went on to take more risk than others. As Nassim Taleb has argued, inadequate appreciation of the uncertainty of the environment inevitably leads economic agents to take risks they should avoid. However, optimism is highly valued, socially and in the market; people and firms reward the providers of dangerously misleading information more than they reward truth tellers. One of the lessons of the financial crisis that led to the Great Recession is that there are periods in which competition, among experts and among organizations, creates powerful forces that favor a collective blindness to risk and uncertainty.

The social and economic pressures that favor overconfidence are not restricted to financial forecasting. Other professionals must deal with the fact that an expert worthy of the name is expected to display high confidence. Philip Tetlock observed that the most overconfident experts were the most likely to be invited to strut their stuff in news shows. Overconfidence also appears to be endemic in medicine. A study of patients who died in the ICU compared autopsy results with the diagnosis that physicians had provided while the patients were still alive. Physicians also reported their confidence. The result: “clinicians who were ‘completely certain’ of the diagnosis antemortem were wrong 40% of the time.” Here again, expert overconfidence is encouraged by their clients: “Generally, it is considered a weakness and a sign of vulnerability for clinicians to appear unsure. Confidence is valued over uncertainty and there is a prevailing censure against disclosing uncertainty to patients.” Experts who acknowledge the full extent of their ignorance may expect to be replaced by more confident competitors, who are better able to gain the trust of clients. An unbiased appreciation of uncertainty is a cornerstone of rationality—but it is not what people and organizations want. Extreme uncertainty is paralyzing under dangerous circumstances, and the admission that one is merely guessing is especially unacceptable when the stakes are high. Acting on pretended knowledge is often the preferred solution.

When they come together, the emotional, cognitive, and social factors that support exaggerated optimism are a heady brew, which sometimes leads people to take risks that they would avoid if they knew the odds. There is no evidence that risk takers in the economic domain have an unusual appetite for gambles on high stakes; they are merely less aware of risks than more timid people are. Dan Lovallo and I coined the phrase “bold forecasts and timid decisions” to describe the background of risk taking.

The effects of high optimism on decision making are, at best, a mixed blessing, but the contribution of optimism to good implementation is certainly positive. The main benefit of optimism is resilience in the face of setbacks. According to Martin Seligman, the founder of potelsitive psychology, an “optimistic explanation style” contributes to resilience by defending one’s self-image. In essence, the optimistic style involves taking credit for successes but little blame for failures. This style can be taught, at least to some extent, and Seligman has documented the effects of training on various occupations that are characterized by a high rate of failures, such as cold-call sales of insurance (a common pursuit in pre-Internet days). When one has just had a door slammed in one’s face by an angry homemaker, the thought that “she was an awful woman” is clearly superior to “I am an inept salesperson.” I have always believed that scientific research is another domain where a form of optimism is essential to success: I have yet to meet a successful scientist who lacks the ability to exaggerate the importance of what he or she is doing, and I believe that someone who lacks a delusional sense of significance will wilt in the face of repeated experiences of multiple small failures and rare successes, the fate of most researchers.

The Premortem: A Partial Remedy

Can overconfident optimism be overcome by training? I am not optimistic. There have been numerous attempts to train people to state confidence intervals that reflect the imprecision of their judgments, with only a few reports of modest success. An often cited example is that geologists at Royal Dutch Shell became less overconfident in their assessments of possible drilling sites after training with multiple past cases for which the outcome was known. In other situations, overconfidence was mitigated (but not eliminated) when judges were encouraged to consider competing hypotheses. However, overconfidence is a direct consequence of features

of System 1 that can be tamed—but not vanquished. The main obstacle is that subjective confidence is determined by the coherence of the story one has constructed, not by the quality and amount of the information that supports it.

Organizations may be better able to tame optimism and individuals than individuals are. The best idea for doing so was contributed by Gary Klein, my “adversarial collaborator” who generally defends intuitive decision making against claims of bias and is typically hostile to algorithms. He labels his proposal the premortem. The procedure is simple: when the organization has almost come to an important decision but has not formally committed itself, Klein proposes gathering for a brief session a group of individuals who are knowledgeable about the decision. The premise of the session is a short speech: “Imagine that we are a year into the future. We implemented the plan as it now exists. The outcome was a disaster. Please take 5 to 10 minutes to write a brief history of that disaster.”

Gary Klein’s idea of the premortem usually evokes immediate enthusiasm. After I described it casually at a session in Davos, someone behind me muttered, “It was worth coming to Davos just for this!” (I later noticed that the speaker was the CEO of a major international corporation.) The premortem has two main advantages: it overcomes the groupthink that affects many teams once a decision appears to have been made, and it unleashes the imagination of knowledgeable individuals in a much-needed direction.

As a team converges on a decision—and especially when the leader tips her hand—public doubts about the wisdom of the planned move are gradually suppressed and eventually come to be treated as evidence of flawed loyalty to the team and its leaders. The suppression of doubt contributes to overconfidence in a group where only supporters of the decision have a v filepos-id="filepos726557"> nacea and does not provide complete protection against nasty surprises, but it goes some way toward reducing the damage of plans that are subject to the biases of WY SIATI and uncritical optimism.

Speaking of Optimism

“They have an illusion of control. They seriously underestimate the obstacles.”

“They seem to suffer from an acute case of competitor neglect.”

“This is a case of overconfidence. They seem to believe they know more than they actually do know.”

“We should conduct a premortem session. Someone may come up with a threat we have neglected.”