I need to write 5 bibliographies for an essay I’m doing discussing how we shouldn’t use animals for cosmetic testing. I included the 5 sources and 2 files that explain how it should be done and an exa

Do Animals Feel Pain? Author(s): Peter Harrison Source: Philosophy , Jan., 1991 , Vol. 66, No. 255 (Jan., 1991), pp. 25-40 Published by: Cambridge University Press on behalf of Royal Institute of Philosophy Stable URL: https://www.jstor.org/stable/3751139 JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected].

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms and Cambridge University Press are collaborating with JSTOR to digitize, preserve and extend access to Philosophy This content downloaded from 64.106.42.43 on Sun, 05 Mar 2023 20:07:25 UTC All use subject to https://about.jstor.org/terms Do Animals Feel Pain? PETER HARRISON In an oft-quoted passage from The Principles of Morals and Legislation (1789yf - H U H P \ % H Q W K D P D G G U H V V H V W K H L V V X H R I R X U W U H D W P H Q W R I D Q L - mals with the following words: 'the question is not, Can they reason? nor, can they talk? but, Can they suffer?'1 The point is well taken, for surely if animals suffer, they are legitimate objects of our moral con- cern. It is curious therefore, given the current interest in the moral status of animals, that Bentham's question has been assumed to be merely rhetorical. No-one has seriously examined the claim, central to arguments for animal liberation and animal rights, that animals actually feel pain. Peter Singer's Animal Liberation is perhaps typical in this regard. His treatment of the issue covers a scant seven pages, after which he summarily announces that 'there are no good reasons, scien- tific or philosophical, for denying that animals feel pain'.2 In this paper I shall suggest that the issue of animal pain is not so easily dispensed with, and that the evidence brought forward to demonstrate that ani- mals feel pain is far from conclusive. Three kinds of argument are commonly advanced to support the contention that animals feel pain. The first involves the claim that animal behaviours give us clues to alleged mental states, about what animals are feeling. Thus animals confronted with noxious stimuli which would cause human beings pain, react in similar ways. They attempt to avoid the stimulus, they show facial contortions, they may even cry out. From these 'pain behaviours' it is inferred that the animals must be experiencing pain. A second argument asserts that by virtue of a similarity in structure and function of nervous systems it is likely that human beings and animals closely related to the human species will experience the exter- nal environment in much the same way. It is assumed, for example, that primates have visual experiences similar to our own, feel hunger and thirst as we do, and so on. Presumably when they encounter noxious stimuli, they, like us, feel pain. A third line of argument is derived from evolutionary theory. Organic evolution implies that there is no radical discontinuity between human and other species. It is likely, on this view, that human minds 1 (Oxford: Clarendon Press, 1907yf I Q ; 9 , , L Y \f. 2 Peter Singer, Animal Liberation (London: Cape, 1976yf . Philosobhv 66 1991 25This content downloaded from 64.106.42.43 on Sun, 05 Mar 2023 20:07:25 UTC All use subject to https://about.jstor.org/terms Peter Harrison evolved from animal minds, and that closely related species would experience similar mental events. The evolutionary model would also suggest that pain is an essential adaptation for organisms in that it helps them avoid those things which would reduce their chances of survival and reproduction. Let us consider these arguments in turn. I The argument based on 'pain behaviours' is the most intuitive. Con- sidered in isolation, however, it is the least compelling. Even the simplest representatives of the animal kingdom exhibit rudimentary 'pain behaviours'. Single-celled organisms, for example, will withdraw from harmful stimuli. Insects struggle feebly after they have been inadvertently crushed underfoot. Yet few would want to argue that these behaviours resulted from the experience of pain. Certainly we show little sympathy for those unfortunate ants which are innocent casualties of an afternoon stroll, or the countless billions of micro- organisms destroyed by the chlorination of our water supplies. For all practical purposes we discount the possibility that such simple forms of life feel pain, despite their behaviours. In more elevated levels of the animal kingdom there are also instances of 'pain behaviours' which undoubtedly occur in the absence of pain. Some parent birds, for instance, will feign injury to lure predators away from their young. The converse is also true. Animals might have sustained considerable tissue damage, but display none of the signs which we imagine would usually attend such trauma. This is because immobility is the best response to certain kinds of injury.3 Pain behaviours, in any case, can be ably performed by non-living entities. If we were to construct a robot which was devoid of speech, yet was to have an active and independent existence, it would be necessary to programme it with mechanisms of self-preservation. Of the many objects it might encounter, it would need to be able to detect and 3 Thus Dennis and Melzack: 'The appropriate behavioural response to overt damage may be inactivity; pain arising from trauma should presumably promote such behaviour. However, the appropriate behavioural response to threat may be vigorous activity; pain arising from threat should therefore promote this sort of activity. Thus the overt expression of pain sensation may actually be a combination of inherently contradictory processes and behavioural tendencies.' S. Dennis and R. Melzack, 'Perspectives on Phy- logenetic Evolution of Pain Expression', Animal Pain: Perception and Allevi- ation, R. L. Kitchell and H. H. Erickson (edsyf % H W K H V G D $ P H U L F D n Physiological Society, 1983yf . 26This content downloaded from 64.106.42.43 on Sun, 05 Mar 2023 20:07:25 UTC All use subject to https://about.jstor.org/terms Do Animals Feel Pain? respond to those likely to cause it most harm. Properly programmed, such a machine would manifest its own 'pain behaviour'. If we lit a fire under it, it would struggle to escape. If it found itself in a dangerous situation from which it could not extricate itself (say it fell into an acid bathyf L W Z R X O G D W W H P S W W R V X P P R Q D L G Z L W K V K U L O O F U L H V , I L W Z H U e immobilized after a fall, it might, by facial contortions, indicate that it was damaged. But this 'pain behaviour' would convey nothing about what it was feeling, for robots, on most accounts, can feel nothing. All that could be learned from such behaviour was how well the robot had been programmed for self-preservation. Mutatis mutandis, the 'pain behaviours' of animals demonstrate, in the first instance, how well natural selection has fitted them for encounters with unfriendly aspects of their environment. For neither animals, nor our imaginary robot, is 'pain behaviour' primarily an expression of some internal state. I think these examples are sufficient to show that the argument from behaviours alone is fairly weak. But the reason we are inclined to deny that simple animals and computers feel pain is that despite their compe- tent performance of 'pain behaviours', their internal structure is suffici- ently dissimilar to our own to warrant the conclusion that they do not have a mental life which is in any way comparable. Animals closely related to the human species, however, possess at least some of the neural hardware which in human beings is thought to be involved in the experience of pain. It might be that the behavioural argument is stronger when considered together with the second argument-that based on the affinity of nervous systems. II Pain is a mental state. It might be caused by, or correlated with, brain states. It might have behavioural or psychological indicators. Yet it remains intractably mental. Herein lies the stumbling block of the second argument, for the closest scrutiny of the nervous systems of human beings and animals has never progressed beyond, and arguably never will progress beyond, the description of brain states to arrive at mental states. Thus the introduction of the structure and function of nervous systems into this discussion brings with it that whole constella- tion of difficulties which revolve around the problem of psycho-physi- cal reductionism. Can mental states be reduced to physical states, and is it possible to project mental states from appropriate anatomical and physiological data? To be successful, the second argument for animal pain must answer both of these questions in the affirmative. Descartes, in his Meditations (1641yf T X L W H F R U U H F W O \ S R L Q W H G R X W W K D t there is no necessary logical relation between propositions about mental 27This content downloaded from 64.106.42.43 on Sun, 05 Mar 2023 20:07:25 UTC All use subject to https://about.jstor.org/terms Peter Harrison states and propositions about physical states. We may doubt the exist- ence of our bodies, but not our minds. A disembodied mind is a logical possibility. Conversely, there is no logical impropriety in imagining bodies behaving in quite complex ways, without those behaviours being necessarily accompanied by relevant mental processes. Our robot, for example, would fit the bill, and indeed for Descartes, animals too were merely automatons, albeit organic ones. Of course from the fact that there is no logical connection between mental states and physical states it cannot be inferred that no contingent connection is possible. Descriptions of mental and physical states may be linked in a number of ways, and it is upon such linkages that the second argument for animal pain depends. The most compelling evi- dence of connection between the physical state of the brain and the mental life of the individual comes from instances of brain pathology or brain surgery. The fact that damage to the cerebral cortex can reduce individuals to a 'mindless' state would suggest that observable brain states cause mind states, or at the very least are a necessary condition of mind states. More specifically, neurologists have had some success in identifying those parts of the brain which seem to be responsible for particular conscious states. Our experience of pain, for example, seems to be mediated through a complicated physical network involving the neospinothalamic projec- tion system (sensory aspects of painyf U H W L F X O D U D Q G O L P E L F V W U X F W X U H s (motivational aspects of painyf D Q G W K H Q H R F R U W H [ R Y H U D O O F R Q W U R O R f sensory and motivational systemsyf , W P D \ E H V L J Q L I L F D Q W W K D W W K L s latter structure we share only with the primates. An argument could be made on this basis alone that the experience which we designate 'pain' is peculiar to us and a few primate species.yf % X W G H V S L W H V X F K Z H O O - established connections between observable brain structures and more elusive mental states, it would be rash to attempt to predict the mental states of individuals on the basis of the presence or absence of certain structures, or even on the basis of the physiological status of those structures.5 The well-known literature on the psychology of pain illus- trates that the same stimulus may prove intensely painful to one indi- vidual, and be of little concern to another. The use of placebos to 4 See, e.g., Ronald Melzack, The Puzzle of Pain (Ringwood: Penguin, 1973yf I . 5 Thus Theodore Barber reports of individuals chronically insensitive to pain that for most, if not all, 'no distinct localized damage exists in the central nervous system'. 'Toward a Theory of Pain', Psychological Bulletin 56 (1959yf , 443. It is true that Barber cites no evidence from autopsies, and that more sophisticated scanning apparatus has been developed since this publication, but the fact that this insensitivity to pain can be reversed without surgical intervention would support Barber's observation. 28This content downloaded from 64.106.42.43 on Sun, 05 Mar 2023 20:07:25 UTC All use subject to https://about.jstor.org/terms Do Animals Feel Pain? control pain, the influence of hypnosis or suggestion to influence pain perception, national differences in pain thresholds, all such aspects of the psychology of pain illustrate that the presence of certain brain structures and requisite sensory inputs are not sufficient conditions for the prediction of mental states. Not only does the psychology of pain afford instances in which the same neural hardware might give rise to a variety of different conscious states, but the human brain itself exhibits an amazing ability to generate certain mental states in the absence of the relevant physical structures. Phantom pain is perhaps the most obvious example. Amputees fre- quently report awareness of a limb which has been recently amputated. In a minority of cases a phantom limb may become an ongoing source of severe pain. Often the pain is located in a quite specific part of the missing appendage. An even more compelling illustration of the generation of certain mental states in the absence of appropriate structures comes from John Lorber's engaging paper 'Is Your Brain Really Necessary?'6 Paediatric neurologist Lorber reports on a number of individuals with hydro- cephalus-a condition which resulted in their having virtually no cere- bral cortex. The most intriguing case cited by Lorber is that of a mathematician with IQ of 126. A brain scan revealed that this young man had, in Lorber's words, 'virtually no brain'. The supratentorial part of the intracranial cavity contained only a thin layer of brain tissue, between one and two millimetres thick, attached to the skull wall. No 'visual cortex' was evident, yet the individual, who by all accounts should have been blind, had above average visual perception. It is likely that the functions which would normally have taken place in the missing cerebral cortex had been taken over by other structures. Cases such as this show that certain aspects of human consciousness have a tenacity which confounds our understanding of the link between brain structure and consciousness. Lorber's discoveries are a striling example of the fact that an advanc- ing neuroscience, far from establishing concrete links between brain states and mental states, is actually deepening the mystery of how the brain is causally related to human consciousness. It need hardly be said that when we cross the species boundary and attempt to make projec- tions about animals' putative mental lives based on the structures of their nervous systems we are in murky waters indeed. Two further examples illustrate this. 6 See David Paterson's article of the same name in World Medicine 3 May 1980, 21-24. Also see Norton Nelkin, 'Pains and Pain Sensations', The Jour- nal of Philosophy 83 (1986yf . 29This content downloaded from 64.106.42.43 on Sun, 05 Mar 2023 20:07:25 UTC All use subject to https://about.jstor.org/terms Peter Harrison The brains of birds, such as they are, do not contain a 'visual cortex'. Thus if we are to argue that similar brain structures give rise to similar experiences, then it is unlikely that the visual experiences of birds will be qualitatively similar to our own. On the other hand, the behaviour of birds would seem to indicate that they can 'see'. While we assume from the behaviour of birds that their visual experience of the world is much the same as ours, if we are committed to the view that like mental states are generated by like brain stuctures, we are bound to admit that this assumption is unfounded. We might of course be tempted to revert to the first argument-that behaviour, not structure, gives the correct cues to mental states. But this seems to commit us to the view that computers, flies, and amoebas have states of consciousness like our own. Another illustration which concerns visual experiences is the much- discussed phenomenon of 'blind-sight'.7 As we have already men- tioned, the 'visual' or striate cortex is thought to be necessary for human vision. Individuals suffering from damage to the striate cortex may lose sight in part of their visual field. Larry Weisenkrantz and his colleagues have carried out a number of experiments on one such individual who claimed to be blind in his left field of view. Simple shapes were presented to this subject in his blind field of view. Though he denied being able to see anything, the subject could, with reasonable con- sistency, describe the shape of the object and point to it. In each instance he insisted that his correct response was merely a guess.8 Examples of blindsight indicate, amongst other things, that it is pos- sible to have visual experiences of which we are unaware. The blind- sight phenomenon thus opens up the possibility that there might be non-conscious experiences to which we can nonetheless respond with the appropriate behaviour.9 Blindsighted individuals can learn to respond as if they see, even though they have no conscious awareness of seeing anything. The significance of this for a discussion of animal behaviours is that animals might respond to stimuli as if they were conscious of them, while in fact they are not. Thus birds which lack the human apparatus of conscious vision (as do blindsighted subjectsyf might not simply have qualitatively different visual experiences as 7 On 'blindsight' see Larry Weisenkrantz, 'Varieties of Residual Experi- ence', Quarterly Journal of Experimental Psychology 32 (1980yf ; Thomas Natsoulas, 'Conscious Perception and the Paradox of "Blindsight"', in Aspects of Consciousness, III, Geoffrey Underwood (ed.yf / R Q G R Q $ F D - demic Press, 1982yf . 8 Larry Weisenkrantz, 'Trying to Bridge some Neurophysiological gaps between Monkey and Man', British Journal of Psychology 68 (1977yf . 9 On the possibility of 'non-conscious experience', see Peter Carruthers, 'Brute Experience', The Journal of Philosophy 86 (1989yf . 30This content downloaded from 64.106.42.43 on Sun, 05 Mar 2023 20:07:25 UTC All use subject to https://about.jstor.org/terms Do Animals Feel Pain? suggested above, they might not have conscious visual experiences at all. It may be concluded that an animal's experience of stimuli which we would find painful might be qualitatively different (that is, not painfulyf or may even be non-conscious. Animals might react to such stimuli by exhibiting 'pain behaviour' and yet not have that mental experience which we call 'pain', or perhaps not have any conscious experience at all.10 So far our discussion of neural circuitry and how it relates to putative mental states has focused upon the inability of contemporary neuro- science to bridge the gap between brain and mind. There are those, of course, who have asserted that it is impossible in principle to bridge that gap. It is significant that Thomas Nagel, one of the chief spokes- men for this group, has alluded to animal consciousness to make his point. In the seminal paper 'What is it Like to be a Bat?',1 Nagel leads us into the subjective world of the bat. These curious mammals, he reminds us, perceive the external world using a kind of sonar. By emitting high-pitched squeals and detecting the reflections, they are able to create an accurate enough image of their environment to enable them to ensnare small flying insects, while they themselves are air- borne. Nagel points out that we might observe and describe in detail the neurophysiology which makes all this possible, but that it is unlikely that any amount of such observation would ever give us an insight into the bat's subjective experience of the world-into what it is like to be a bat. As Nagel himself puts it: For if the facts of experience-facts about what it is like for the experiencing organism-are available only from one point of view, then it is a mystery how the true character of experience could be revealed in the physical operation of that organism.'2 Nagel thus asserts that the construction of subjective experiences from the observation of brain states is in principle impossible.13 For our present purposes it is not necessary to enter into the argu- ment about whether mind states are reducible to brain states. Suffice it 10 This is also suggested by Carruthers, ibid., 266-269. 1 The Philosophical Review 83 (1974yf . 12 Ibid., 442. 13 Colin McGinn has made a similar point from a different perspective. He argues that the mystery of our mental life arises out of the fact that we simply do not possess the cognitive faculties necessary to solve the mind-body prob- lem. 'Cognitive closure' prevents our ever having access to that vital natural link which presumably exists between brain states and conscious states. See Colin McGinn, 'Can We Solve the Mind-Body Problem?', Mind 98 (1989yf , 349-366. 31This content downloaded from 64.106.42.43 on Sun, 05 Mar 2023 20:07:25 UTC All use subject to https://about.jstor.org/terms Peter Harrison to say that there is sufficient confusion about how brain structure and function relate to mental states to rule out any simple assertion that animal nervous systems which resemble our own will give rise to mental states like ours. It seems then, that pain, a mental state, can be neither perceived nor inferred by directing the senses on to behaviours or on to the brain itself. But what of the third argument for animal pain-that based on evolutionary theory? III Evolutionary theory provides the most convincing case for animal pain. Because evolution stresses continuities in the biological sphere, it breaks down the distinction between human and animal. Thus any special claims made on behalf of the human race-that they alone experience pain, for example-require justification. Before examining how, in evolutionary terms, we might justify treating Homo sapiens as a unique case, we ought to consider first how animal pain might con- ceivably fit into the evolutionary scheme of things. Natural selection 'designs' animals to survive and reproduce. An important sort of adaptation for organisms to acquire would be the ability to avoid aspects of the environment which would reduce their chances of survival and reproduction. Pain, we might suppose, plays this adaptive role by compelling organisms to avoid situations in their world which might harm them. This view of the matter receives some measure of support from cases of individuals born with a congenital insensitivity to pain. Such unfortunate people frequently injure them- selves quite severely in their early childhood, and must be taught how to avoid inflicting damage upon themselves. That such a condition can lead eventually to permanent disability or death would suggest that pain has considerable adaptive value for human beings at least.14 Ani- mals which were similarly insensitive to damaging stimuli, we might reasonably infer, would have little chance of survival. Yet there are difficulties with this interpretation. Strictly, it is not pain (real or imputedyf Z K L F K L V W K H D G D S W D W L R Q E X t the behaviour which is elicited when the damaging stimulus is applied. Those who are insensitive to pain are not disadvantaged by the absence of unpleasant mental states, but by a lack of those behavioural responses which in others are prompted by pain. We tend to lose sight of the primacy of behaviour because we get caught up in the con- notations of 'expression'. That is to say, we consider some animal 14 On congenital insensitivity to pain see Melzack, The Puzzle of Pain, 15f. 32This content downloaded from 64.106.42.43 on Sun, 05 Mar 2023 20:07:25 UTC All use subject to https://about.jstor.org/terms Do Animals Feel Pain? behaviours to be expressions of a particular mental state. Even Darwin, who should have known better, was guilty of this infelicity when he spoke of the 'expression of the emotions in man and animals'. Such locutions are misleading because they suggest that certain aspects of animal behaviour are arbitrary outward signs which signify some con- scious state. But the simplest application of the theory of natural selection would only allow that such behaviours as violent struggling, grimacing and crying out, serve some more direct purpose in enhancing an animal's chances of survival and reproduction. (Darwin admittedly stressed the communicative aspects of these signs.yf 7 R H [ S O R L W D Q R W K H r example which I have drawn upon in another context, a wildebeest which is being torn apart by dogs will die in silence, while a chimpanzee will screech out in response to some trivial hurt like a thorn puncturing its foot.15 It seems that the chimp gives expression to its pain, whereas the wildebeest does not. Yet neither expresses its pain. Rather, each behaves in a way likely to enhance the survival of the species. The chimpanzee communicates either to warn its conspecifics, or to sum- mon aid. The wildebeest remains silent so that others will not be lured to their deaths. It is the behaviour, rather than some hypothetical mental state, which adapts the organism. Another linguistic usage which holds us in thrall is the language of 'detection'. We assume that 'detection' entails 'conscious awareness of'. This leads us to believe that an animal cannot respond to a stimulus unless in some sense it consciously 'knows' what it has encountered. The reason such insectivorous plants as the venus fly trap capture our imagination is that they behave as if they are aware. How, we ponder, do they 'know' that the fly is there? Again we need to remind ourselves that the simplest of organisms are able to detect and respond to stimuli, yet we are not thereby committed to the view that they have knowledge or beliefs. The same is true of more neurologically complex organisms. There is an important truth in that litany of behaviourists: animals acquire behaviours, not beliefs. If it is granted that the behaviour rather than some postulated mental state is what adapts an organism, we are next led to inquire whether organisms might exhibit 'pain behaviours' without that attendant men- tal state which we call 'pain'. As we noted at the outset, many invertebr- ates to which we do not generally attribute feelings of pain exhibit 'pain behaviour'. In higher animals too, as we have already seen, it is possible that relevant behaviours might be performed in the absence of any conscious experience. But is it probable? Must pain be introduced to cause the behaviours, or might these be caused more directly by the 15 David McFarland, 'Pain', The Oxford Companion to Animal Behaviour, David McFarland (ed.yf 2 [ I R U G 8 Q L Y H U V L W \ 3 U H V V \f, 439. 33This content downloaded from 64.106.42.43 on Sun, 05 Mar 2023 20:07:25 UTC All use subject to https://about.jstor.org/terms Peter Harrison stimulus, or perhaps by indifferent conscious states? We might at this point simply opt for the most parsimonious explanation. This is in fact the upshot of Lloyd Morgan's famous dictum: 'In no case may we interpret an action as the outcome of the exercise of a higher psychical faculty, if it can be interpreted as the outcome of the exercise of one which stands lower in the psychological scale.'16 We must ask, in other words, if we can explain all animals' reactions to noxious stimuli without recourse to particular mental states. Our blindsight examples show that it is possible for organisms to respond appropriately to stimuli in the complete absence of mental states. If the general case is true, then the same might be said for the specific performance of 'pain behaviours' in the absence of pain. The thrust of Morgan's canon can be reinforced epistemologically with the arguments of Descartes. As we know, Descartes' radical doubt led him to propose that all we can know for certain are the truths of logic and the existence of our own mental states.17 Fortunately one of the truths of logic was the existence of a God who could guarantee, to some extent, the veracity of perceptions of the world. Yet strict application of the criterion of doubt permits us to ascribe minds to other creatures only if they demonstrate (verbally, by signs, or by rational behaviouryf evidence of mental activity. From the lack of such indications from animals, Descartes concluded that we have no evidence which would enable us legitimately to infer that animals have minds.18 Not having minds, they cannot feel pain. Descartes thus provides epistemological grounds for denying that animals feel pain.19 If we adopt the conservative stance of Morgan or Descartes, then it seems that we have no grounds, scientific or philosophical, for asserting that animals feel pain. Yet this is a much weaker claim than the positive assertion that we have good reasons for believing that animals do not 16 Quoted in Robert Boakes, From Darwin to Behaviourism (Cambridge University Press, 1984yf 7 K L V G L F W X P L V D F W X D O O \ D Y H U V L R Q R I W K H $ U L V W R - telian principle, 'Nature does nothing in vain', couched in evolutionary terms. 17 Meditations II. 18 Descartes' clearest explanation of the matter comes in a letter to the English Platonist, Henry More. See Descartes, Philosophical Letters, Anthony Kenny (ed.yf 2 [ I R U G & O D U H Q G R Q 3 U H V V \f, 243-245. 19 It may seem that Morgan and Descartes are making the same point, but they are not. Morgan's canon was virtually a biological application of the second law of thermodynamics, asserting that a complex biological system would not evolve if a simpler one could perform the same function. Of course, in applying this canon to 'psychical' functions, Morgan seems to have com- mitted himself to the view that more complex mental states require a more complex physical apparatus. 34This content downloaded from 64.106.42.43 on Sun, 05 Mar 2023 20:07:25 UTC All use subject to https://about.jstor.org/terms Do Animals Feel Pain? feel pain, or, to put it another way, that only human beings feel pain.20 Certainly a reasonable case could be advanced that given our admitted ignorance, we have moral grounds for giving animals the benefit of the doubt. We shall return to this point later. For the moment, let us consider the positive statement of the case. Do we have reasons for believing that only human beings feel pain? Or, recasting the question in evolutionary terms, why should pain have adaptive value for the human species, if it would serve no purpose in other species? IV Pain is a mental state, and mental states require minds. Our inquiry, then, is in part an investigation of the selective advantage conferred by the possession of a mind. A mind's reflection on its own activities, amongst other things, enables us to predict the behaviour of other human beings, and to a lesser extent, animals. By reflecting upon our reasons for behaving in certain ways, and by assuming that our fellow human beings are similarly motivated, we can make predictions about how they are likely to behave in certain situations. But more than this, by ascribing consciousness and intelligence to other organisms we can also make predictions about how they will behave. Such ascriptions, whether they have any basis in fact or not, can thus help the human species survive. As H. S. Jennings remarked almost ninety years ago, if an amoeba 'were as large as a whale, it is quite conceivable that occasions might arise when the attribution to it of the elemental states of consciousness might save the unsophisticated human from destruction that would result from lack of such attribution.'21 Along with human self-awareness then, came a tendency to attribute a similar awareness to other creatures. That animals might have beliefs, mental images, inten- tions and pains like our own could be nothing more than a useful fiction which gives us a shorthand method of predicting their behaviour. There is, then, some value in the belief that animals suffer pain, for it provides a reasonably reliable guide to how they will behave. But it is not an infallible guide. If, for example, we were to pit ourselves against a chess-playing computer, the best strategy to adopt would be to act as if the machine were a skilled human opponent, possessed of certain intentional states-a desire to win, particular beliefs about the rules, 20 Thus Descartes admitted in his letter to More that his thesis about animals was only probable. Philosophical Letters, 244. 21 Quoted in Larry Weisenkrantz, 'Neurophysiology and the Nature of Consciousness', Mindwaves, C. Blakemore and S. Greenfield (edsyf 2 [ I R U G : Blackwell, 1987yf . 35This content downloaded from 64.106.42.43 on Sun, 05 Mar 2023 20:07:25 UTC All use subject to https://about.jstor.org/terms Peter Harrison and so on. However, there might be occasions when it would be better to adopt another attitude towards the computer. Let us imagine that the computer was programmed to play at three levels-beginner, inter- mediate, and advanced. Set at the 'beginner' level, the computer might show itself to be vulnerable to a basic 'fool's mate', so that whenever this simple gambit was used, it inevitably lost. A human opponent could thus be confident of beating the computer whenever he or she wished. Now this exploitation of the computer's weakness would result from the adoption of quite a different stance. No longer would the computer be treated as if it had desires and beliefs (or more importantly as if it had the ability to acquire new beliefsyf I R U D K X P D Q R S S R Q H Q W L Q W K H V D P e situation would quickly learn to counter the 'fool's mate'. Instead, predictions of the computer's behaviour would be based on the way it had been designed to operate. Thus, our wildebeest, on an intentional account, should exhibit 'pain behaviour'. Only when we adopt a 'design stance' (the animal was 'designed' by natural selection to behave in ways which would enhance the survival of the speciesyf G R Z H J H W D U H D V R Q D E O e explanation of why it dies in silence.22 The general point is this. The ascription to animals of certain mental states usually enables us to predict their behaviour with some accuracy (such ascription increasing our own chances of survivalyf % X W W K H U H Z L O O D O Z D \ V E H L Q V W D Q F H V Z K H U e this intentional model will break down and explanations which refer to selective advantages will be preferred. Another reason for attributing pain experiences only to human beings is to do with free-will and moral responsibility. While there has been some dispute about whether animals ought to be the object of our moral concern, we do not usually consider animals to be moral agents. Animals are not generally held to be morally responsible for their own acts, and notwithstanding some rather odd medieval judicial practices, animals do not stand trial for antisocial acts which they might have committed. What is absent in animals which is thought to be crucial to the committing of some wrong is the mens rea-the evil intent. Ani- mals are not morally responsible for the acts they commit because while they may have behavioural dispositions, they do not have thoughts and beliefs about what is right and wrong, nor can they, whatever their behavioural disposition, form a conscious intent. Or at least, so we generally believe. Animals, in short, are not 'free agents', and this is why they are not regarded as being morally responsible. But what does the determined nature of animal behaviour have to do with pain? Simply this, that if animals' behaviours are causally determined, it makes no sense to speak of pain as an additional causal factor. 22 The terms 'intentional stance' and 'design stance' are D. C. Dennett's. See his Brainstorms (Hassocks: Harvester Press, 1978yf . 36This content downloaded from 64.106.42.43 on Sun, 05 Mar 2023 20:07:25 UTC All use subject to https://about.jstor.org/terms Do Animals Feel Pain? One way of seeing the force of this is to explore some of the contexts in which we use the term 'pain'. There are many ways we have of talking about pain which exclude animals. Consider the following: (1yf ) R U W K e long-distance runner, it is a matter of mind over matter. He must break through the pain barrier'. (2yf 7 K H K X Q J H U V W U L N H U I L Q D O O \ V X F F X P E H d and died'. (3yf ( Y H Q W K R X J K V K H N Q H Z L W Z R X O G P H D Q D K R U U L E O H G H D W K D t the stake, she refused to recant'. (4yf 7 K H S D L Q E H F D P H X Q E H D U D E O H + e cried out'. If we attempt to substitute animals for the human agents in these statements, the result becomes complete nonsense. Our inability to fit animals into the logic of these expressions is not merely because animals are not (contingentlyyf O R Q J G L V W D Q F H U X Q Q H U V R U K X Q J H r strikers, or religious martyrs. The key lies in statement (4yf : H P X V t ask: Do animals ever find pain unbearable?, and, What reasons could they have for bearing it? Consider this sentence in which a suitable substitution might be made. 'The man's hand reached into the flames, and was immediately withdrawn with a cry'. We could easily substitute 'ape' for 'man' here and the statement will retain its sense. But what about this: 'The man plunged his hand into the flames again, knowing that only he could reach the valve and stem the flow of petrol which threatened to turn the sleepy village into an inferno.' Now the substitution becomes impossi- ble, for what could conceivably cause the ape to plunge its hand back into the flames? Nothing, I suspect, for apes do not have reasons for bearing pain. Now it may seem unsatisfactory to proceed on the basis of certain linguistic practices to make some claim about how things really are. (This, I suspect, is why Anselm's ontological argument always leaves one feeling a little uneasy.yf % X W W K H H [ F O X V L Y H Q D W X U H R I W K H J U D P P D U R f 'pain', or more correctly of 'bearing pain', reveals the unique province of pain. Pain operates as one kind of reason which free agents are bound to take into consideration when they decide on a particular course of action. Pain can be borne if there are reasons. But an animal never has reasons either to bear pain, or to succumb to pain. And if pain never need be brought into the sphere of reasons-the mind-then there is no need for it, qua unpleasant mental event, at all. Thus, while it is undeniable that animals sense noxious stimuli and react to them, these stimuli only need be represented as unpleasant mental states if they are to become the body's reasons in the context of other reasons. Only as various degrees of unpleasantness can they be taken seriously amongst reasons, and this is only necessary in the mind of a rational agent. Another way of thinking about this is to consider the attributes of the long-distance runner, the hunger striker, the martyr, the hero of the sleepy village. We could say that they had mental strength, great courage, or moral character. But we would never predicate these of 37This content downloaded from 64.106.42.43 on Sun, 05 Mar 2023 20:07:25 UTC All use subject to https://about.jstor.org/terms Peter Harrison animals. The wildebeest dies silently and does not endanger the herd. But does it die courageously? Does it bear the pain to the end? Does it have a reason for remaining silent? No, because it does not have a choice. All wildebeest behave in this fashion. And if it does not have a choice, there is no requirement for the dismemberment of its body to be represented mentally as pain. Pain is the body's representative in the mind's decision-making process. Without pain, the mind would imperil the body (as cases of insensitivity to pain clearly showyf % X W Z L W K R X W W K H U D W L R Q D O G H F L V L R Q - making mind, pain is superfluous. Animals have no rational or moral considerations which might overrule the needs of the body. It is for this reason that Descartes referred to pain, hunger and thirst as 'confused modes of thought', which can only be predicated of creatures which can think.23 V We may now return to the original issue which prompted this examin- ation of the reasons for ascribing pains to animals-the moral question of how we should treat animals. The arguments set out above do not constitute a conclusive disproof of animal pain. Indeed if the mind- body problem is as intractable as I have suggested, then the best we can manage is to arrive at some degree of probability. This much should be clear, however: First, there are reasons for claiming that only human beings feel pain; second, our treatment of animals cannot be based on dubious speculations about their mental lives. It follows, at the very least, that Bentham's question cannot provide a sound basis for an ethic which is to extend to animals. How then do we proceed from here? It will seem to some that while there remains even a small possibility that animals (or certain kinds of animalsyf I H H O S D L Q W K H V H F U H D W X U H s ought to be given the benefit of the doubt. This is true to a point. Animal liberationists and animal rights activists have performed a valuable service in exposing many frivolous and mischievous practices which resulted in the unnecessary mutilation and deaths of animals. Such practices should cease, and many have. On the other hand, there are many animal experiments which improve, or might lead to the improvement of, the human lot. Even if a utilitarian equation which balances net pleasures over net pains can provide a rational basis for making moral choices in these matters (and this is doubtfulyf W K e balance should be tipped in favour of human beings, given our uncer- 23 Meditation IV (HR I, 192yf P \ H P S K D V L V & I 1 R U W R Q 1 H O N L Q Z K R V W D W H s that pain is an attitude not a sensation. 'Pains and Pain Sensations', 148. 38This content downloaded from 64.106.42.43 on Sun, 05 Mar 2023 20:07:25 UTC All use subject to https://about.jstor.org/terms Do Animals Feel Pain? tainty about animal pain. Further, it virtually goes without saying that if it is doubtful that animals experience physical pain, even more groundless are claims that animals have other kinds of mental states- anxiety, the desire for freedom, and so on. Concerns for the psychologi- cal well-being of battery hens, veal calves, penned dolphins, and the like, would seem to be fundamentally misplaced. Our moral sen- sibilities have gone sadly awry when we expend effort on determining 'what animals prefer' before inquiring into whether 'preference' can be sensibly applied to animals. This is especially so when we are in little doubt as to what human beings prefer, and yet so many of them exist in conditions little different from those of battery hens. None of this means, however, that there are no strictures on how we ought to behave towards animals. Other considerations-aesthetic, ecological, sentimental, psychological, and pedagogical-can give us a more solid foundation for an 'animal ethic'. Briefly, it would be morally wrong to attack Michelangelo's 'Pieta' with a hammer, despite the fact that this beautifully crafted piece of marble cannot feel pain. If animals are mere machines, they are, for all that, intricate and beautiful machines (most of themyf Z K L F K O L N H R O G E X L O G L Q J V W U H H V D Q G Z R U N V R f art, can greatly enrich our lives. Accordingly, rational arguments can be mounted against acts which would damage or detroy them. There is also a growing awareness in the Western world that human beings and animals form part of a global biological community. While at times this awareness expresses itself in rather silly ways, it is still true that if we carelessly alter the balance of that community by the slaugh- ter of certain animals for pleasure or short-term economic gain, we place at risk the quality of life of ourselves and that of future generations. At a more personal level, many people form strong emotional attach- ments to animals. Domestic animals traditionally have served as play- mates for children and as company for the elderly. If mistreating these animals causes human beings to suffer, then such mistreatment is clearly wrong. Moreover, as the notorious Milgram experiments have shown, the belief that one is causing pain to another, even if false, can do great psychological harm.24 When we believe we are being cruel to animals we do ourselves damage, even though our belief might be mistaken. Finally, there is surely some value in the observation of Thomas Aquinas that kindness to animals might help to teach kindness to 24 See Stanley Milgram, Obedience to Authority: An Experimental View (London: Tavistock, 1974yf . 39This content downloaded from 64.106.42.43 on Sun, 05 Mar 2023 20:07:25 UTC All use subject to https://about.jstor.org/terms Peter Harrison human beings.25 Considerations of these kinds, though they require further development, can provide a far more certain guide to how we should treat animals. Bond University 25 Summa theologiae, la, 2ae. 102, 6. 40This content downloaded from 64.106.42.43 on Sun, 05 Mar 2023 20:07:25 UTC All use subject to https://about.jstor.org/terms