Produce a module summary on Interior Plains region. The summary should highlight the major processes and landforms found in each region, and can be used as a review tool for the final exam. Summaries

Page%|%1%%%MODULE'3:'INTERIOR'PLAINS'UNIT'2:'CLIMATE'AND'GLACIERS'Slide%1:%As%with%the%previous%module%focusing%on%the%Western%Cordillera%region,%the%second%unit%in%Module%3%is%going%to%examine%the%various%climate%types%located%within%the%Interior%Plains%physiographic%region,%as%well%as%the%most%recent%glacial%period%and%the%landforms%created%by%that%geomorphological%process.%%As%you%will%notice%as%we%work%our%way%through%this%unit,%the%climate%types%and%glacial%landforms%are%different%than%those%in%the%Western%Cordillera%region.%%These%differences%are%due%to%geography,%or%more%specifically%the%location%of%these%two%regions%in%relation%to%the%proximity%to%a%large%water%body%and%the%shape%of%the%topography%(as%outlined%in%the%previous%unit).%%As%we%progress%through%this%unit,%note%these%differences%and%similarities.%Additional%readings%on%the%climate%and%glaciation%within%the%Interior%Plains%region%are%provided%in%the%supplementary%information%included%with%this%module.%%Slide%2:%Let’s%first%begin%by%examining%the%spatial%location%of%the%climate%regions%in%the%Interior%Plains%physiographic%region.%%The%map%on%this%slide%show%the%distribution%of%the%climate%types%for%North%America%based%on%the%Koppen%climate%classification%system.%%As%discussed%in%the%previous%unit,%this%system%uses%a%threeNletter%combination%to%define%the%annual%temperature%and%precipitation%patterns%for%different%locations%on%Earth.%%%The%red%box%indicates%the%approximate%location%of%the%Interior%Plains%physiographic%region.%%As%indicated%on%the%map,%two%climate%types%dominate%this%physiographic%region:%a%moist%continental%climate%(Dfb)%and%a%Boreal%Forest%climate%(Dfc).%%Both%of%these%climates%are%continental%or%microthermal%climates.%%In%the%next%few%slides%we%will%discuss%and%focus%on%the%main%characteristics%of%these%climates.%%In%addition,%small%areas%of%the%region%are%characterized%as%having%a%continental%subarctic%climate%(Dsc).%%These%areas%are%typically%found%in%the%northern%portions%of%this%physiographic%region.%%%% Page%|%2%%%Slide%3:%As%discussed%in%the%previous%slide,%one%of%the%most%common%climate%type%in%the%region%is%the%moist%continental%climate.%%The%climograph%for%Brandon%Manitoba,%shown%on%this%slide,%is%an%example%of%this%climate%type.%%This%climate%has%a%cold%winter%(with%temperatures%for%the%coldest%month%being%less%than%N3%degrees%Celsius)%and%a%warm%to%cool%summer%(with%the%warmest%month%having%temperatures%greater%than%10%degrees%Celsius,%but%less%than%22%degrees%Celsius).%%The%winters%will%be%severe%with%strong%winds,%snowstorms%and%cold%air%originating%from%continental%polar%or%Arctic%air%masses,%while%in%the%summer%thunderstorms%may%develop.%In%terms%of%precipitation,%this%climate%type%will%be%wet%all%season.%%Brandon,%Manitoba%for%instance,%receives%more%than%15%mm%of%precipitation%(primarily%in%the%forms%of%snow%and%rain)%each%month%throughout%the%year.%%The%climate%(both%temperature%and%precipitation)%is%controlled%by%midNlatitude%cyclones%that%form%along%the%polar%front,%typically%in%the%autumn,%winter%and%spring%seasons.%There%is%large%variability%in%the%weather%on%a%year%basis%for%this%climate%type,%and%annual%temperature%ranges%can%also%be%large.%%This%climate%type%is%generally%found%between%40%and%55%degrees%latitude%in%this%physiographic%region.%%Slide%4:%Typically%located%north%of%the%moist%continental%climate%(at%latitudes%above%55%degrees%North)%is%the%boreal%forest%climate.%%As%already%mentioned,%this%is%an%additional%major%climate%type%found%within%the%Interior%Plains%physiographic%region.%%This%climate%type%is%similar%to%the%previous%one%in%terms%of%the%general%temperature%and%precipitation%patterns.%%The%climograph%on%this%slide%for%Yellowknife%in%the%Northwest%Territories%is%an%example%of%this%climate%type.%%This%location%has%a%warm%to%cool%summer%and%a%cold%winter,%with%ample%precipitation%for%each%month.%%It%does%not%have%a%dry%(or%drier)%season.%%The%controlling%factors%are%also%similar.%%Both%climate%types%are%influenced%by%midNlatitude%cyclones%that%occur%in%the%autumn,%winter%and%spring%seasons,%and%cold%continental%polar%and%Arctic%air%masses%dominate%the%region%during%much%of%the%year.%The%difference%between%this%climate%type%and%the%moist%continental%climate%is%based%on%the%extent%of%the%warmer%summer%period.%In%the%moist%continental%climate%type,%at%least%4%months%will%have%an%average%monthly%temperature%above%10%degrees%Celsius,%while%for%the%boreal%forest%climate,%only%3%or%fewer%months%will%have%a%mean%temperature%above%10%degrees%Celsius.%%Therefore,%the%summer%period%(defined%by%warmth%in%temperature)%does%not%last%as%long%in%this%climate%type.%%The%winters%are%also%much%longer%(in%terms%of%temperature),%and%extended%periods%of%extremely%cold%temperatures%and%clear%skies%are%common%in%the%boreal%forest%climate%type.%%%%%% Page%|%3%%%Slide%5:%In%addition%to%these%two%climate%types,%smaller%areas%of%the%Interior%Plains%physiographic%region%have%a%continental%subarctic%climate%(Dsc).%%This%climate%type%is%similar%to%the%previous%two%in%terms%of%temperature%–cool%summers%(with%3%or%fewer%months%having%a%mean%temperature%above%10%degrees%Celsius)%and%cold%winters.%%The%difference%is%the%precipitation%patterns.%%The%moist%continental%and%boreal%forest%climates%have%ample%precipitation%year%round%with%no%distinct%dry%or%wet%seasons.%%The%continental%subarctic%climate%has%a%dry%summer,%similar%to%Vancouver%and%the%Mediterranean%climate%(however%with%colder%temperatures).%%During%this%season,%the%driest%month%averages%less%than%30%mm%of%precipitation%and%less%than%oneNthird%the%wettest%winter%month%precipitation.%%%%Slide%6:%We%will%now%shift%our%attention%to%the%glacial%past%of%the%Interior%Plains%region.%%As%we%will%discuss%in%the%next%few%slides,%the%glacial%history%of%this%physiographic%region%is%different%than%that%of%the%previous%region.%%These%differences%have%resulted%in%significant%distinctions%in%terms%of%the%topography%and%landforms%created%(or%modified)%and%deposited%by%the%glaciers.%%%% Page%|%4%%%Slide%7:%During%the%Pleistocene%glaciation,%which%peaked%around%18,000%years%ago,%a%large%glacial%ice%sheet%known%as%the%Laurentide%ice%sheet%dominated%the%Interior%Plains%region.%As%opposed%to%the%advancement%of%the%alpine%glaciers%that%occurred%in%the%Western%Cordillera%region,%the%Laurentide%ice%sheet%was%a%large%continental%glacier,%which%was%much%thicker%and%wider%than%the%alpine%glaciers.%%At%its%maximum%extent%this%ice%sheet%was%up%to%3%km%thick%in%regions%and%extended%to%37%degrees%north%and%covered%an%area%from%Labrador%to%the%Interior%Plains.%%Due%to%the%thickness%and%extent,%this%glacier%locked%up%a%significant%portion%of%the%water%within%the%hydrological%cycle,%thus%lowering%sea%level%on%a%global%scale.%%During%the%last%glacial%maximum%(at%approximately%21,000%years%ago),%this%ice%sheet%advanced%and%retreated%a%number%of%times,%coinciding%with%oscillating%temperatures.%The%Laurentide%glaciers%advanced%across%the%plains%at%least%five%time;%earliest%was%likely%prior%to%1.8%million%years%ago%when%the%glacier%advanced%at%least%into%southwestern%Saskatchewan.%%Each%advance%and%subsequent%melting%resulted%in%the%deposition%of%glacial%and%nonglacial%units.%%In%addition,%this%cyclical%pattern%influenced%the%global%climate%by%diverting%the%jet%stream.%%During%the%melting%phase,%this%lowNsalinity%freshwater%disrupted%the%oceanic%circulation,%and%more%specifically%the%thermohaline%circulation.%As%an%ice%sheet%advances%and%retreats,%it%typically%modifies%the%underlying%topography%and%changes%the%landforms%found%in%the%region.%%In%addition,%this%glacier%also%helped%to%create%the%soils%found%in%the%region%(which%will%be%discussed%in%the%next%unit).%%Slide%8:%Another%largeNscale%glacial%feature%that%occurred%after%the%last%glacial%period%and%impacted%this%physiographic%region%is%Lake%Agassiz.%%A%description%of%Lake%Agassiz%can%be%found%in%the%supplementary%information.%%This%lake%is%one%of%the%largest%iceNmargin%lakes%that%once%covered%parts%of%Saskatchewan%and%Manitoba,%as%well%as%Ontario.%%The%map%on%the%slide%shows%the%spatial%extent%of%Lake%Agassiz.%%This%lake,%as%with%the%Laurentide%ice%sheet%influenced%the%Prairie%landscape%and%left%deposits%from%inland%seas%that%helped%create%the%fertile%soils.%%The%remnants%of%this%lake%can%still%be%seen%today%in%the%Interior%Plains%–%including%the%lakes%presently%found%in%Manitoba%(including%Lake%Winnipeg%and%Lake%Manitoba),%raised%beaches%(which%are%terraces%or%platforms%found%many%kilometers%from%the%water%body)%and%river%valleys%(such%as%Assiniboine%River).%%%%%% Page%|%5%%%Slide%9:%As%already%mentioned,%one%of%the%most%interesting%consequences%of%any%glacial%period%or%ice%age%is%the%ability%of%the%ice%sheet%(in%this%case)%to%modify%the%topography.%%This%is%especially%true%and%apparent%in%the%Interior%Plains%region.%%The%advancements%and%subsequence%retreats%of%the%Laurentide%Ice%Sheet%(and%to%some%extent%the%formation%of%Lake%Agassiz)%modified%the%preNglacial%environment%in%a%number%of%ways.%%Firstly,%the%glacial%advances%exposed%underlying%bedrock,%allowing%it%to%be%weathered%and%eroded%by%external%factors%such%as%water,%wind%and%biological%and%chemical%processes.%%Secondly,%the%water%flowing%from%the%glacier%created%nonNpermanent%streams%and%braided%channels%that%transported%material%within%and%out%of%the%region,%changing%the%sediment%composition%of%areas.%%Lastly,%the%glaciers%themselves,%along%with%the%changes,%would%deposit%this%sediment%in%other%locations,%creating%specific%features.%%These%three%processes%(exposing%bedrock,%transporting%material%and%depositing%sediment)%would%ultimately%create%features%and%landforms%that%are%found%throughout%the%Interior%Plains%physiographic%region.%%In%the%next%slides,%we%will%focus%on%discussing%some%of%these%features.%%%Slide%10:%One%prominent%feature%created%by%the%Laurentide%Ice%Sheet%and%found%throughout%the%interior%Plains%region%is%glacial%till.%%Glacial%till%is%defined%as%the%deposition%of%unsorted%sediment%or%material%after%a%glacier%has%retreated%over%an%area.%%As%you%can%see%in%the%photo%on%this%slide,%the%layer%of%sediment%has%no%sorting,%with%a%mixture%of%different%clast%sizes%(large%boulders%intermixed%with%fine%sediment).%%This%is%typical%of%a%glacier%that%has%retreated%in%situ.%%As%the%glacier%has%advanced%over%a%region,%it%entrains%and/or%erodes%material%along%the%glacial%bed.%%This%material%will%be%incorporated%into%the%glacier%and%when%it%melts%in%place,%the%sediment%will%melt%out%in%no%specific%pattern.%%Thick%deposits%of%till%can%be%found%in%the%Duck%Mountains%and%Cameron%Hills%in%the%Interior%Plains.%%Slide%11:%Glacial%till,%as%described%in%the%previous%slide%can%form%specific%landforms,%which%are%located%throughout%the%Interior%Plains%region.%%One%such%landform%is%a%terminal%or%end%moraine.%%A%terminal%moraine%is%a%ridge%composed%of%glacial%till%that%has%been%deposited%when%the%glacial%ice%melted%at%the%furthest%advance%of%the%ice%sheet.%%This%feature%is%shown%on%the%figure%on%this%slide%(location%is%circled%in%red).%%This%ridge%lies%parallel%to%the%glacier%and%the%shape%of%the%moraine%resembles%the%shape%of%the%terminus%of%the%glacier.%%The%size%and%accumulation%of%glacial%till%can%give%an%indication%of%the%rate%of%retreat%of%the%glacier%–%for%instance%a%large%ridge%would%indicate%that%the%glacier%was%melting%in%situ%for%a%longer%period.%%Beyond%this%location,%the%glacier%has%not%modified%the%landscape.%%%%%% Page%|%6%%%Slide%12:%Another%landform%that%is%composed%of%glacial%till%and%found%in%the%Interior%Plains%is%a%ground%moraine.%%A%ground%moraine%is%not%a%ridge%(as%a%terminal%moraine)%rather%a%blanket%of%till%(of%nonNuniform%thickness)%that%is%deposited%under%a%glacier.%%This%feature%is%shown%in%the%schematic%on%the%slide%(circled%in%red).%%Typically,%it%varies%from%0%to%5%m%in%thickness.%%After%the%glacier%retreats,%this%moraine%will%have%a%hummocky%topography%or%gently%rolling%plains,%with%areas%of%small%mounds%interspersed%with%areas%of%low%relief.%%Ground%moraine%can%be%found%near%the%town%of%Deloraine%Manitoba,%in%the%southwest%corner%of%the%province.%%Slide%13:%Drumlins%are%another%glacial%depositional%feature%that%is%form%from%glacial%till.%%A%drumlin%is%a%low%oval%mound%of%glacial%till%that%is%sculpted%by%glacial%movement.%%Its%oval%shape%gives%an%indication%of%glacial%movement.%%The%steepest%slope%and%summit%of%the%drumlin%is%located%at%the%upNice%end%(closest%to%the%glacier).%%The%flow%of%the%glacier%would%have%been%oriented%along%the%large%axis%of%the%drumlin,%with%the%tapered%end%pointing%in%the%direction%of%the%glacier%flow.%%The%size%of%a%drumlin%will%vary%in%shape,%while%the%typical%drumlins%are%between%5%and%25%km%high%and%0.1%to%5%km%in%length.%%Drumlins%usually%occur%in%groups%and%form%a%drumlin%field.%%%%Drumlin%fields%are%found%near%Livingstone%Lake%In%northwestern%Saskatchewan%and%Morley%Flats%in%western%Alberta.%%Slide%14:%Another%feature%formed%by%the%deposition%of%glacial%till%is%a%glacial%flute.%%As%a%glacier%moves%over%an%area,%large%rocks%embedded%in%the%base%of%the%glacier%will%begin%to%scrape%and%erode%the%surface.%%Over%time,%these%large%rocks%may%become%lodged%in%the%ground.%%The%glacier%will%continue%to%move%over%and%around%this%lodged%rock,%creating%a%long%cavity%on%the%down%slope%side%or%the%rock%(hundreds%of%meters%in%length).%%When%the%glacier%begins%to%retreat,%the%cavity%may%then%be%filled%with%glacial%till%forming%mounds%that%are%a%few%meters%high%and%hundreds%of%meters%long.%%Flutes%can%be%found%in%the%Blackspring%Ridge%flute%field%in%southNcentral%Alberta.%%Slide%15:%Erratics%are%a%glacial%depositional%feature%commonly%found%within%the%Interior%Plains%physiographic%region.%%Erratics%are%pieces%of%rock%that%are%considerably%different%(in%terms%of%size%and%type)%of%rock%native%to%the%area%in%which%it%is%located.%%They%seem%to%be%out%of%place,%relative%to%what%is%around%it.%%These%rocks%have%been%transported%by%a%glacier%and%left%behind%after%the%glacier%has%retreated%and%melted.%%These%‘foreign’%rocks%can%range%in%size%from%pebbles%to%large%boulders.%%In%Saskatchewan,%a%megaNerratic%can%be%found%that%is%30%by%38%kilometers%in%size%and%up%to%100%meters%thick%–%a%pretty%large%rock!%%%% Page%|%7%%%Slide%16:%Fluvial%processes%created%by%glacial%melt%have%also%produced%glacial%landforms%within%the%Interior%Plains.%%All%glaciers,%whether%advancing%or%retreating,%will%have%melt%water%that%flows%within%the%glacier%via%glacial%streams.%%These%streams%will%create%what%are%known%as%glaciofluvial%landforms.%%One%such%feature%is%an%esker.%%An%esker%is%a%long%meandering%ridge%of%glacial%sediment%deposited%by%meltwater%from%a%stream%flowing%in%or%under%a%decaying%ice%sheet%in%subglacial%tunnels.%%This%feature%is%shown%on%the%diagram%on%the%slide.%%Eskers%can%range%in%size%from%5%to%50%m%in%height%and%a%meter%to%tens%of%meters%in%length.%%The%formation%of%an%esker%is%thought%to%take%place%after%the%glacier%stagnates%and%is%not%advancing%(otherwise%the%movement%would%produce%a%ground%moraine).%%Eskers%can%be%found%in%the%Narrow%Hills%Provincial%Park,%north%of%Prince%Albert%Saskatchewan%and%near%Arrow%Hills%in%southwestern%Manitoba.%%%%%%Slide%17:%An%additional%glaciofluvial%landform%found%in%the%Interior%Plains%physiographic%region%is%the%kame.%%A%kame%is%an%irregularly%shaped%steep%hill%of%till%that%is%deposited%by%a%melting%ice%sheet,%and%shaped%by%the%meltwater.%%This%landform%is%highlighted%in%the%diagram%on%the%slide.%%The%photo%shows%a%kame%in%a%glaciated%environment.%%Kame%terraces%can%be%found%along%the%side%of%a%glacial%valley,%and%are%the%deposits%of%the%streams%flowing%between%the%ice%and%the%adjacent%valley%sides.%%Kames%can%be%found%near%Edmonton%Alberta.%%Kames%often%occur%in%association%with%kettle%holes%in%kame%and%kettle%topography.%%Kettles%will%be%described%in%the%next%slide.%%Slide%18:%Kettles%are%formed%when%a%buried%block%of%glacial%ice%is%melted%in%place.%%Kettles%are%shown%in%the%diagram%on%the%slide.%%A%block%of%ice%may%be%separated%from%the%main%glacier%when%it%becomes%stagnated%or%retreats.%%These%isolated%blocks%then%may%become%buried%in%sediment%exiting%the%glacier%from%streams.%%When%the%ice%blocks%eventually%melt,%this%creates%a%hollow%or%depression%known%as%a%kettle.%%These%depressions%may%fill%with%water%and%become%kettle%hole%lakes%(which%are%very%shallow%–%less%than%a%few%meters%in%depth)%or%may%be%infilled%with%sediment.%%The%photo%on%the%slide%shows%a%series%of%kettle%lakes%in%the%Northwest%Territories.%%Kettle%lakes%can%be%found%throughout%the%Interior%Plains%region.%%Slide%19:%The%final%glaciofluvial%landform%that%we%will%discuss%is%an%outwash%plain.%%This%feature%is%a%plain%located%beyond%the%terminal%moraine%that%is%formed%by%glacial%sediments%deposited%by%meltwater%from%a%glacier.%As%water%leaves%a%glacier,%its%velocity%decreases%and%thus%it%will%preferentially%deposit%the%sediment%it%has%obtained%as%the%glacier%eroded%the%surface,%starting%with%the%largest%material.%%Therefore%the%material%in%the%outwash%plain%is%often%sizeNsorted;%largest%boulders%are%deposited%closest%to%the%original%terminus%of%the%glacier%and%finer%material%deposited%at%larger%distances%from%the%terminus.%%Due%to%the%deposition%of%sediment,%braided%channels%may%form%on%the%surface%of%the%outwash%plain,%as%shown%in%the%photo%on%the%slide.%%%% Page%|%8%%%Slide%20:%This%concludes%the%climate%and%glacier%unit%of%the%module.%%One%of%the%things%I%hope%you%appreciate%after%this%unit%is%the%different%climatic%and%glacial%features%that%are%created,%compared%to%the%Western%Cordillera%region.%%These%differences%are%due%to%the%location%of%this%physiographic%region,%as%well%as%the%fact%that%this%region%was%influenced%by%a%large%continental%glacier,%as%opposed%to%an%alpine%glacier.%%%You%should%review%the%supplementary%information%that%corresponds%to%this%unit%and%read%the%readings%listed.%%In%the%next%section%we%will%discuss%the%soil,%flora%and%fauna%present%in%the%Interior%Plains%physiographic%region.%