

 STUDYDADDY
 	How it Works
	Homework Answers
	
 Ask a Question
	Top Tutors
	FAQ
	Sign in

 StudyDaddy

 Math
 I have a MATLAB assignment. (Diiferential equations) I have a MATLAB assignment. (Diiferential equations)

 MATLAB sessions: Laboratory 4 MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP In this laboratory session we will learn how to 1.
 Use MATLAB solvers for solving scalar IVP 2.
 Use MATLAB solvers for solving higher order ODEs and systems of ODES.
 First-Order Scalar IVP Consider the IVP { y′ = t− y; y (0) = 1 : (L4.1) The exact solution is y(t) = t− 1 + 2 e− t . A numerical solution can be obtained using various MATLAB solvers. The standard MATLAB ODE solver is ode45. The function ode45implements 4/5th order Runge-Kutta method. Type help ode45to learn more about it.
 Basic ode45Usage The basic usage of ode45 requires a function (the right-hand side of the ODE), a time interval on which to solve the IVP, and an initial condition. For scalar ﬁrst-order ODEs the function may often be speciﬁed using the inlineMATLAB command. A complete MATLAB solution would read:
 1 f = inline('t-y','t','y'); 2 [t,y] = ode45(f,[0,3],1); 3 plot(t,y) (line numbers are not part of the commands!) • Line 1 deﬁnes the function fas a function of tand y, i.e., f(t; y) = t− y. This is the right-hand side of the ODE (L4.1).
 • Line 2 solves the IVP numerically using the ode45solver. The ﬁrst argument is the function f, the second one determines the time interval on which to solve the IVP in the form [initial time, ﬁnal time], and the last one speciﬁes the initial value of y. The output of ode45 consists of two arrays: an array tof discrete times at which the solution has been approximated, and an array ywith the corresponding values of y. These values can be listed in the Command Window as [t,y] ans = 0 1.0000 0.0502 0.9522 0.1005 0.9093 0.1507 0.8709 0.2010 0.8369
 2.9010 2.0109 2.9257 2.0330 2.9505 2.0551 2.9752 2.0773 3.0000 2.0996 c ⃝ 2011 Stefania Tracogna, SoMSS, ASU MATLAB sessions: Laboratory 4 Since the output is quite long we printed only some selected values.
 For example the approximate solution at t≃ 2:9257 is y≃ 2:0330. Unless speciﬁc values of yare needed it is better in practice to simply plot the solution to get a sense of the behavior of the solution.
 • Line 3 thus plots yas a function of tin a ﬁgure window. The plot is shown in Figure L4a.
 Figure L4a: Solution of (L4.1).
 Error Plot, Improving the Accuracy Error plots are commonly used to show the accuracy in the numerical solution. Here the error is the diﬀerence between the exact solution y(t) = t− 1 + 2 e− t and the numerical approximation obtained from ode45 . Since this approximation is only given at speciﬁed time values (contained in the array t) we only evaluate this error at these values of t:
 err = t-1+2*exp(-t)-y err = 1.0e-005 * 0 0.0278 0.0407 0.0162 -0.0042
 -0.0329 -0.0321 -0.0313 -0.0305 -0.0298 (in practice the exact solution is unknown and this error is estimated, for example by comparing the solutions obtained by diﬀerent methods). Again, since the error vector is quite long we printed only a few selected values. Note the 1.0e-005at the top of the error column. This means that each component of the vector erris less than 10 − 5 in absolute value.
 A plot of errversus tis more revealing. To do this note that errors are usually small so it is best to use a logarithmic scale in the direction corresponding to errin the plot. To avoid problems with negative numbers we plot the absolute value of the error (values equal to 0, e.g. at the initial time, are not plotted):
 semilogy(t,abs(err)); grid on; c ⃝ 2011 Stefania Tracogna, SoMSS, ASU0 0.5 1 1.5 2 2.5 3 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 MATLAB sessions: Laboratory 4 Figure L4b: Error in the solution of (L4.1) computed by ode45.
 See Figure L4b. Note that the error level is about 10 − 6 . It is sometimes important to reset the default accuracy ode45uses to determine the approximation. To do this use the MATLAB odesetcommand prior to calling ode45, and include the result in the list of arguments of ode45:
 f = inline('t-y','t','y'); options = odeset('RelTol',1e-10,'AbsTol',1e-10); [t,y] = ode45(f,[0,3],1,options); err = t-1+2*exp(-t)-y; semilogy(t,abs(err)) See Figure L4c.
 Figure L4c: Error in the solution of (L4.1) computed by ode45with a better accuracy.
 Parameter-Dependent ODE When the function deﬁning the ODE is complicated, rather than entering it as inline, it is more convenient to enter it as a separate functionﬁle, included in the same ﬁle as the calling sequence of ode45 (as below) or saved in a separate m-ﬁle.
 In this Section we will look at an example where the ODE depends on a parameter.
 Consider the IVP { y′ = −a(y − e− t) − e− t ; y (0) = 1 : (L4.2) with exact solution y(t) = e− t (independent of the parameter a!). An implementation of the MATLAB solution in the interval [0 ;3] follows.
 c ⃝ 2011 Stefania Tracogna, SoMSS, ASU0 0.5 1 1.5 2 2.5 3 10-8 10-7 10 -6 10-5 0 0.5 1 1.5 2 2.5 3 10-16 10-15 10-14 10 -13 10-12 10-11 10-10 MATLAB sessions: Laboratory 4 1 function ex_with_param 2 t0 = 0; tf = 3; y0 = 1; 3 a = 1; 4 [t,y] = ode45(@f,[t0,tf],y0,[],a); 5 disp(['y(' num2str(t(end)) ') = ' num2str(y(end))]) 6 disp(['length of y = ' num2str(length(y))]) 7 %--- 8 function dydt = f(t,y,a) 9 dydt = -a*(y-exp(-t))-exp(-t); • Line 1 must start with function, since the ﬁle contains at least two functions (a driver + a function).
 • Line 2 sets the initial data and the ﬁnal time.
 • Line 3 sets a particular value for the parameter a.
 • In line 4 the parameter is passed to ode45as the 5 th argument (the 4 th argument is reserved for setting options such as the accuracy using odeset, see page 3, and the placeholder []must be used if default options are used).
 Correspondingly the function fdeﬁned in lines 8-9 must include a 3 rd argument corresponding to the value of the parameter. Note the @fin the argument of ode45. This is necessary when the function is not deﬁned as inline. See the help on ode45for more information.
 • On line 5 the value of y(3) computed by ode45is then displayed in a somewhat fancier form than the one obtained by simply entering y(end). The command num2stringconverts a number to a string so that it can be displayed by the dispcommand.
 The m-ﬁle ex with param.mis executed by entering ex with paramat the MATLAB prompt. The output is >> ex_with_param y(3) = 0.049787 length of y = 45 • The additional line 6 in the ﬁle lists the length of the array ycomputed by ode45. It is interesting to check the size of yobtained for larger values of a. For example for a= 1000 we obtain >> ex_with_param y(3) = 0.049792 length of y = 3621 This means that ode45needed to take smaller step sizes to cover the same time interval compared to the case a= 1, even though the exact solution is the same!
 Not all problems with a common solution are the same! Some are easier to solve than others.
 When ais large the ODE in (L4.2) is said to be stiﬀ. Stiﬀness has to do with how fast nearby solutions approach the solution of (L4.2), see Figure L4d.
 ⋆ Other MATLAB ODE solvers are designed to better handle stiﬀ problems. For example replace ode45 with ode15s inex with param.m(without changing anything else) and set a= 1000:
 4 [t,y] = ode15s(@f,[t0,tf],y0,[],a); >> ex_with_param y(3) = 0.049787 length of y = 18 c ⃝ 2011 Stefania Tracogna, SoMSS, ASU MATLAB sessions: Laboratory 4 Figure L4d: Direction ﬁeld and sample solutions in the t-y window [0 ;0 :1] ×[0:9 ;1] as obtained using DFIELD8: a= 1 (left) and a= 1000 (right).
 A solution exhibiting blow up in nite time Consider the Diﬀerential Equation dy dt= 1 + y2 ; y (0) = 0 The exact solution of this IVP is y= tan tand the domain of validity is [0 ; 2). Let’s see what happens when we try to implement this IVP using ode45in the interval [0 ;3].
 >> f=inline('1+y^2','t','y'); >> [t,y]=ode45(f,[0,3],0); Warning: Failure at t=1.570781e+000. Unable to meet integration tolerances without reducing the step size below the smallest value allowed (3.552714e-015) at time t.
 > In ode45 at 371 The MATLAB ode solver gives a warning message when the value of t= 1 :570781 is reached. This is extremely close to the value of =2 where the vertical asymptote is located.
 If we enter plot(t,y) we obtain Figure L4e on the left (note the scale on the y-axis), however, if we use xlim([0,1.5]) , we can recognize the graph of y= tan t.
 Figure L4e: Solution of y′ = 1 + y2 , y(0) = 0 without restrictions on the axis, and with xlim([0,1.5]) c ⃝ 2011 Stefania Tracogna, SoMSS, ASU 0 0.5 1 1.5 2 0 2 4 6 8 10 12 14 16 18x 10 13 0 0.5 1 1.5 0 5 10 15 MATLAB sessions: Laboratory 4 Higher-Order and Systems of IVPs We show here how to extend the use of ode45to systems of ﬁrst-order ODEs (the same holds for other solvers such as ode15s). Higher-order ODEs can ﬁrst be transformed into a system of ﬁrst-order ODEs to ﬁt into this framework. We will see later how to do this.
 As an example consider the predator-prey system (Lotka-Volterra) representing the evolution of two populations. u 1 = u 1(t) and u 2 = u 2(t):
 du 1 dt= au 1− bu 1u 2; du 2 dt= −cu 2+ du 1u 2 (L4.3) with initial populations u 1(0) = 10 and u 2(0) = 60. The parameters a, b, c, and dare set to a= 0 :8, b = 0 :01, c= 0 :6, and d= 0 :1. The time unit depends on the type of populations considered.
 Although the ODE problem is now deﬁned with two equations, the MATLAB implementation is very similar to the case of a single ODE, except that vectors must now be used to describe the unknown functions.
 1 function ex_with_2eqs 2 t0 = 0; tf = 20; y0 = [10;60]; 3 a = .8; b = .01; c = .6; d = .1; 4 [t,y] = ode45(@f,[t0,tf],y0,[],a,b,c,d); 5 u1 = y(:,1); u2 = y(:,2); % y in output has 2 columns corresponding to u1 and u2 6 figure(1); 7 subplot(2,1,1); plot(t,u1,'b-+'); ylabel('u1'); 8 subplot(2,1,2); plot(t,u2,'ro-'); ylabel('u2'); 9 figure(2) 10 plot(u1,u2); axis square; xlabel('u_1'); ylabel('u_2'); % plot the phase plot 11 %-- 12 function dydt = f(t,y,a,b,c,d) 13 u1 = y(1); u2 = y(2); 14 dydt = [a*u1-b*u1*u2 ; -c*u2+d*u1*u2]; • In line 2 the 2 ×1 vector y0deﬁnes the initial condition for both u 1 and u 2.
 • In line 4 the parameters are passed to the ODE solver ode45as extra arguments (starting from the 5 th), as many as there are parameters in the problem (4 here).
 The output array yof ode45 now has 2 columns, corresponding to approximations for u 1 and u 2, respectively, instead of a single one.
 • In line 5 these quantities are therefore retrieved and stored in arrays u1and u2, which are descriptive names.
 • The part of the program deﬁning the ODE system includes lines 11-14. Note that all the parameters appearing as arguments of ode45must appear as arguments of the function f. For a speciﬁc value of tthe input yto fis a 2 ×1 vector, whose coeﬃcients are the values of u 1 and u 2 at time t.
 Rather than referring to y(1)andy(2) in the deﬁnition of the equations on line 14, it is best again to use variable names which are easier to identify, e.g., u1and u2.
 • Line 14 deﬁnes the right-hand sides of the ODE system as a 2 ×1 vector: the ﬁrst coeﬃcient is the ﬁrst right-hand side (du 1 dt) and the second coeﬃcient the second right-hand side (du 2 dt).
 • Lines 6-10 correspond to the visualization of the results. To plot the time series of u1 and u2, we create a 2 ×1 array of subplots. Because the scales of u1 and u2 are diﬀerent, it is best using two diﬀerent graphs for u1 and u2 here. Type help subplot to learn more about it. On a diﬀerent ﬁgure, we then plot the phase plotrepresenting the evolution of u 2 in terms of u 1. Note that u 1 and u 2 vary cyclically. The periodic evolution of the two populations becomes clear from the closed curve u 2 vs.
 u 1 in the phase plot.
 c ⃝ 2011 Stefania Tracogna, SoMSS, ASU MATLAB sessions: Laboratory 4 Figure L4f: Lotka-Volterra example.
 Reducing a Higher-Order ODE Numerical solution to IVPs involving higher order ODEs – homogeneous or not, linear or not, can be obtained using the same MATLAB commands as in the ﬁrst-order by rewriting the ODE in the form of a system of ﬁrst order ODEs.
 Let’s start with an example. Consider the IVP d2 y dt2+ 4 dy dt+ 3 y= cos t;with y(0) = −1; dy dt(0) = 0 : (L4.4) To reduce the order of the ODE we introduce the intermediate unknown function v= dy dt. As a result dv dt =d 2 y dt2 so that the ODE can be written dv dt+ 4 v+ 3 y= cos t. This equation only involves ﬁrst- order derivatives, but we now have two unknown functions y= y(t) and v= v(t) with two ODEs. For MATLAB implementations it is necessary to write these ODEs in the form d ∗ dt= : : : . Thus d 2 y dt2+ 4 dy dt+ 3 y= cos t⇔ { dy dt= v; dv dt= cos t− 4v − 3y: (L4.5) Initial conditions from (L4.4) must also be transformed into initial conditions for yand v. Simply, y (0) = −1; dy dt(0) = 0 ⇔{ y(0) = −1; v (0) = 0 : (L4.6) EXERCISES Instructions: For your lab write-up follow the instructions of LAB 1.
 1. (a) Modify the function ex with 2eqsto solve the IVP (L4.4) for 0 ≤t≤ 40 using the MATLAB routine ode45. Call the new function LAB04ex1.
 Let [t,Y] (note the upper case Y) be the output of ode45andyand vthe unknown functions.
 Use the following commands to deﬁne the ODE:
 function dYdt= f(t,Y) y=Y(1); v=Y(2); dYdt = [v; cos(t)-4*v-3*y]; Ploty(t) and v(t) in the same window (do not use subplot), and the phase plot showing v vs yin a separate window.
 Add a legend to the ﬁrst plot. (Note: to display v(t) = y′ (t), use 'v(t)=y''(t)').
 Add a grid. Use the command ylim([-1.5,1.5])to adjust they-limits for both plots.
 Adjust the x-limits in the phase plot so as to reproduce the pictures in Figure L4g.
 Include the M-ﬁle in your report.
 c ⃝ 2011 Stefania Tracogna, SoMSS, ASU0 5 10 15 20 2 4 6 8 10 12 u1 0 5 10 15 20 40 60 80 100 120 140 u2 2 4 6 8 10 12 40 50 60 70 80 90 100 110 120 130 140 u1 u 2 MATLAB sessions: Laboratory 4 Figure L4g: Time series y= y(t) and v= v(t) = y′ (t) (left), and phase plot v= y′ vs. yfor (L4.4).
 (b) For what (approximate) value(s) of tdoes yreach a local maximum in the window 0 ≤t≤ 40?
 Check by reading the matrix Yand the vector t. Note that, because the M-ﬁle LAB04ex1.m is a function ﬁle, all the variables are local and thus not available on the Command Window.
 To read the matrix Yand the vector t, you need to modify the M-ﬁle by adding the line [t Y] .
 Do not include the whole output in your lab write-up. Include only the values necessary to answer the question.
 (c) What seems to be the long term behavior of y?
 (d) Modify the initial conditions to y(0) = 1 :5, v(0) = 5 and run the ﬁle LAB04ex1.mwith the modiﬁed initial conditions. Based on the new graphs, determine whether the long term behavior of the solution changes. Explain. Include the pictures with the modiﬁed initial conditions to support your answer.
 Nonlinear Problems Nonlinear problems do not present any additional diﬃculty from an implementation point of view (they may present new numerical challenges for integration routines like ode45).
 EXERCISES 2. (a) Consider the modiﬁed problem d2 y dt2+ 4 y2 dy dt+ 3 y= cos t;with y(0) = −1; dy dt(0) = 0 : (L4.7) The ODE (L4.7) is very similar to (L4.4) except for the y2 term in the left-hand side. Because of the factor y2 the ODE (L4.7) is nonlinear, while (L4.4) is linear. There is however very little to change in the implementation of (L4.4) to solve (L4.7). In fact, the only thing that needs to be modiﬁed is the ODE deﬁnition.
 Modify the function deﬁning the ODE in LAB04ex1.m. Call the revised ﬁle LAB04ex2.m. The new function M-ﬁle should reproduce the pictures in Fig L4h.
 Include in your report the changes you made to LAB04ex1.mto obtainLAB04ex2.m .
 (b) Compare the output of Figs L4g and L4h. Describe the changes in the behavior of the solution in the short term.
 (c) Compare the long term behavior of both problems (L4.4) and (L4.7), in particular the am- plitude of oscillations.
 (d) ModifyLAB04ex2.m so that it solves (L4.7) using Euler’s method with N= 400 in the interval 0 ≤t≤ 40 (use the ﬁle euler.mfrom LAB 3 to implement Euler’s method; do c ⃝ 2011 Stefania Tracogna, SoMSS, ASU0 5 10 15 20 25 30 35 40 -1.5 -1 -0.5 0 0.5 1 1.5 y(t) v(t)=y'(t) -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1.5 -1 -0.5 0 0.5 1 1.5 y v=y' MATLAB sessions: Laboratory 4 Figure L4h: Time series y= y(t) and v= v(t) = y′ (t) (left), and phase plot v= y′ vs. yfor (L4.7).
 not delete the lines that implement ode45). Let [te,Ye] be the output of euler, and note that Yeis a matrix with two columns from which the Euler’s approximation to y(t) must be extracted. Plot the approximation to the solution y(t) computed by ode45(in black) and the approximation computed by euler(in red) in the same window (you do not need to plot v(t) nor the phase plot). Are the solutions identical? Comment.
 Include the modiﬁed M-ﬁle in your report.
 3.
 Solve numerically the IVP d2 y dt2+ 4 ydy dt+ 3 y= cos t;with y(0) = −1; dy dt(0) = 0 in the interval 0 ≤t≤ 40. Include the M-ﬁle in your report.
 Is the behavior of the solution signiﬁcantly diﬀerent from that of the solution of (L4.7)?
 Is MATLAB giving any warning message? Comment.
 A Third-Order Problem Consider the third-order IVP d3 y dt3+ 4 y2 d2 y dt2+ 8 y(dy dt) 2 + 3 dy dt= −sin t; with y(0) = −1; dy dt(0) = 0 ;d 2 y dt2(0) = 4 :(L4.8) Introducing v= dy dtand w= dy 2 dt2 we obtain dv dt= wand dw dt=d 3 y dt3 = −sin t− 4y 2 w − 8yv 2 − 3v . Moreover, v (0) = dy dt(0) = 0 and w(0) = d 2 y dt2 (0) = 4. Thus (L4.8) is equivalent to dy dt= v; dv dt= w; dw dt= −sin t− 4y 2 w − 8yv 2 − 3v with y (0) = −1; v (0) = 0 ; w (0) = 4 : (L4.9) 4. (a) Write a function M-ﬁle that implements (L4.8) in the interval 0 ≤t≤ 40. Note that the initial condition must now be in the form [y0,v0,w0]and the matrix Y, output of ode45, has now three columns (from which y, v and wmust be extracted). On the same ﬁgure, plot the three time series and, on a separate window, plot the phase plot using figure(2); plot3(y,v,w,'k.-'); grid on; view([-40,60]) xlabel('y'); ylabel('v=y'''); zlabel('w=y'''''); c ⃝ 2011 Stefania Tracogna, SoMSS, ASU0 5 10 15 20 25 30 35 40 -1.5 -1 -0.5 0 0.5 1 1.5 y(t) v(t)=y'(t) -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1.5 -1 -0.5 0 0.5 1 1.5 y v=y' MATLAB sessions: Laboratory 4 Figure L4i: Time series y= y(t), v= v(t) = y′ (t), and w= w(t) = y′ (t) (left), and 3D phase plot v= y′ vs. yvs w= y′′ for (L4.8) (rotated with view = [-40,60]).
 Do not forget to modify the function deﬁning the ODE.
 The output is shown in Fig. L4i. The limits in the vertical axis of the plot on the left were deliberately set to the same ones as in Fig. L4h for comparison purposes using the MATLAB command ylim([-1.5,1.5]) .
 Include the M-ﬁle in you report.
 (b) Compare the output of Figs L4h and L4i. What do you notice? (c) Diﬀerentiate the ODE in (L4.7) and compare to the ODE in (L4.8).
 (d) Explain why the solution of (L4.7) also satisﬁes the initial conditions in (L4.8). Hint:Sub- stitute t= 0 into (L4.7) and use the initial conditions for yand v.
 c ⃝ 2011 Stefania Tracogna, SoMSS, ASU0 5 10 15 20 25 30 35 40 -1.5 -1 -0.5 0 0.5 1 1.5 y v=y' w=y'' -1 -0.5 0 0.5 1 -1.5 -1 -0.5 0 0.5 1 1.5 2 -4 -2 0 2 4 y v=y' w=y''

 GET YOUR EXPERT ANSWER ON STUDYDADDY

 Post your own question
and get a custom answer

 GET ANSWER

 [image: LET'S ORDER THE BEST ASSIGNMENT SERVICES]

 Have a similar question?

 Continue to post
 Continue to edit or attach image(s).

 	
 [image: Fast and convenient]
 Fast and convenient

 Simply post your question and get it answered by professional tutor within 30 minutes. It's as simple as that!

	[image: Any topic, any difficulty]
 Any topic, any difficulty

 We've got thousands of tutors in different areas of study who are willing to help you with any kind of academic assignment, be it a math homework or an article.

	
 [image: 100% Satisfied Students]
 100% Satisfied Students

 Join 3,4 million+ members who are already getting homework help from StudyDaddy!

 	Homework Answers
	Ask a Question
	Become a tutor
	FAQ
	Contact Us
	Privacy Policy
	DMCA
	Terms of Use
	Sitemap

 Copyright © 2024 StudyDaddy.com

 Worbert Limited - All right reserved.

 20 Christou Tsiarta Elma 2, 22, 1077, Nicosia, Cyprus

