Answered You can buy a ready-made answer or pick a professional tutor to order an original one.
Name:W # :Section: Time: Date: Lab partner:
Name:
W # :
Section: Time: Date:
Lab partner:
Lab # 4
Experiment 1
Newton’s second law – Atwood’s Machine
with a Massless Pulley
Purpose:
Introduction:
Procedure:
Data
Mass of system msys = (m + M) = 200 g
m
(g)
M
(g)
Fext = (M – m)*g
(dyne)
aexp (cm/s2 )
Trial 1 Trial 2 Trial 3 Average
50
150
458.3
446.6
451.6
60
140
15.1
19.7
18.6
70
130
50.7
53.0
86.4
80
120
34.9
29.8
86.4
90
110
44.4
79.2
65.9
a (m/s2)
F (N)
Plot a vs. F (F on y-axis and a on x-axis), evaluate the slope of the curve (best line fit), then compare the slope to the mass of the system (m + M) through your error analysis
F = msys a
Analysis:
Conclusions
Experiment 2
Newton’s second law
Acceleration along a frictionless horizontal surface
Purpose:
Introduction:
Procedure:
Data
M = Mcart = 510 g
m
(g)
aexp (cm/s2 )
Trial 1 Trial 2 Trial 3 Average
1 / m
( 1 / kg)
1 / aexp
(s2 / m)
55
88.6
88.2
88.9
65
104.5
103.8
104.6
75
120.8
119.1
116.9
85
130.6
134.9
138.5
95
145.6
145.5
146.9
Analysis:
Starting with Eq. 1:
Eq. 1
With little algebra (left as an exercise), we can re-write this equation as:
Eq. 2
If we denote
and ;
then Eq. 2 can be expressed as a straight line given by:
Plot (1/aexp) vs. (1/m), where 1/aexp along y and 1/m along x.
Find the best line fit to your data points.
Evaluate the slope and the intersection of the best line fit.
The slope of your curve should be compared to its theoretical value M/g and the intersection should be compared to its theoretical value of 1/g
Questions:
Verify Eq. 2 starting from Eq. 1
Conclusions
Experiment 3
Frictionless motion on an
Inclined Plane
Purpose:
Introduction:
In the figure below:
The driving force of the system (msys = m+M) is
F = mg – Mg sinθ
(the assumption here is that mg > Mg sinθ thus system is accelerating clockwise)
è Using Newton’s 2nd law we can write the acceleration of the system as:
We can re-write this as:
Eq. 1
If we denote x = sinθ and y = a, then this relation of Eq. 2 can be represented by a straight line of the form:
y = (slope). x + (intersection)
where slope = and intersection =
Procedure:
Data
m = 150 g ; M = Mcart = 510 g
θ ( o )
Trial #
a
(cm/s2 s)
sinθ
a (m/s2)
3
1
2
61.7
82.8
6
1
2
38.4
67.1
9
1
2
61.2
56.8
12
1
2
77.3
61.1
15
1
2
54.7
55.3
- Find experimentally the critical angle θC where a = 0 (system about to move when mg = Mg sinθ)
à θC =
1- Plot sinθ on the horizontal axis and a on the vertical axis, fit your data points to a straight line. Compare the slope and intersection of your straight line to their theoretical values.
2- Compare the experimental value of θC to its theoretical prediction of Eq. 1.
Analysis
Conclusions
- @
- 5 orders completed
- ANSWER
-
Tutor has posted answer for $20.00. See answer's preview
**** Lab * *************** *********** ****** *** – ********** ******* **** * Massless ****************** determine the acceleration ** the ******* ** ** ** ********** ******* **************** ****** Newton’s ****** law ***** ** a ************ ********* ******** ***** mass *** **************************************** Atwood’s ******* ************ ************ **** ** gathered *** ******** to *********** ************ ***** ** ********* ** ********** ****** *** *** value ** ******* **** is 10m/s^2 **** ********** ****** *** *** ************ ** ** object ** ******** proportional to *** *** ***** ****** ** ** *** **** *** ************ ** ********* ************ ** the **** ** *** ******** ********************* digital ****** ** *** ******* was ********* to * digital **** ** *** ********* *** then the ***** ****** ** the ****** *** ******* ******** string *** draped **** *** pulley and ******** a **** ****** on each *** ** *** ****** The ******* **** ***** **** proper amount ** **** ** ******** positions The ******* ****** *** ** maximum ****** and *** ****** **** ** the zero ****** ******** *** **** *** ******** ** pressing the ***** ****** *** *** ******* weight *** ******** **** zero ****** ******** This ******* both masses ** ***** ************ **** the two ****** *** ******** ******** the ********* *** ******* The acceleration *** recorded *** the ***** ********* was repeated **** more ***** *** **** recorded ** shown *************************** ** ****** msys * ** * ** = *** *** * *********** * ** *** m)*g (dyne) aexp ****** ******** * Trial * ***** * Average *********************** 60140081511971861780 70130065075308646337 ******************** ************************ * ****** * **************************************** * vs F ** ** ****** and a ** ******* ******** the ***** ** the ***** ***** **** **** then ******* the ***** ** *** **** ** *** ****** (m + ** ******* your ***** *********** = **** a F(N) ****** ** ****** * 2 3 4 ************************** * 1-05/ 3-15= ****** ********************************** ***** produced * ****** ******** **** * positive ************ the ***** it ** shown that ************ ** ******** ************ to *** net force ********* ** ********** second *** ***** is ***** ******* from *** graph **** *** total mass ******* ******** *** ************ ********* with increase ** *** *** ***** ****** on ********************** 2 ********** second *************** along a ************ horizontal ********************* show that ************ is proportional ** *** *** ***** ******************* ** ********* ************ ** *** **** ** *** ************************** ************ ***** ** inclined plane *** ** ********** ** knowing the angle ***** *** ************ *** **** ** determined ** measuring the ************* ******** experimentally and ****** use ** *** ******* ******** between ************ *** ************* velocity Procedure: The apparatus **** *** ** * *** **** ** *** **** *** * *** the ******* **** It *** ******* **** *** ***** *** frictionless *** ******* mass M ******** *** ***** *** **** *** ******** **** **** to ********** **** a ******** *** **** was ****** *** *** ******* **** ********* ****** ****** extension *** ******* on the **** *** ***** ** ****** *** tied to *** **** the ****** ****** was set ** and the cart *** ****** with ****** *** measurements were ******** in the ***** ************ * ***** * *** *** * *** **** ****** ******** 1 Trial * ***** * ******* * * m( 1 * **** * aexp(s2 / m) ********************** 651045103810461043015380956 75120811911169118901333084 85130613491385134671176074 *************************************************** **** ** **** Eq 1 With little ******* (left ** ** ********* ** *** re-write this ******** ***** ** 2 If we ****** and ***** ** 2 can ** expressed ** * straight **** ***** ********* (1/aexp) ** ***** where 1/aexp along * *** *** ***** ***** *** **** **** *** ** your **** ************** *** ***** and *** intersection ** *** **** **** fitThe ***** of your ***** ****** ** ******** to *** *********** ***** *** *** *** ************ ****** ** ******** ** *** *********** value ** 1/g 1/a10 05 * ** 15 ** ******************* ** * starting **** ** * ** *** ********* ******** * it ******* But the ******** ** * ******** **** is ***** byy * mx * * ************************ ******** * ** ***** ****** * ********** M/g *** *** are ********* replace **** ** and ** respectively ** ******************************* ***** ** *** ******* *** ** a ******** line **** * positive slopeFrom *** graph Newton’s ****** law *** ******** ***** ************ is ************ to the ***** ****** * **************** 3 Frictionless ****** ** ********** *************** ********* ******** of Newton’s second ***** ******* ******** ***** ** * ************************* *** ****** ********* driving ***** ** *** ****** ***** * **** *** * ** *** ** ********* ********** here is that ** **** ** ***** **** ****** is ************ ************ ***** ********** 2nd *** ** can write the ************ ** *** ****** as: **** *** ******** **** *** Eq *** ** ****** x * ***** and * * a then this relation of ** * *** ** *********** ** * straight line ** the ***** y = ******* * + (intersection) ***** ***** = *** ************ * ******************* ********** *** *** up ** ***** ***** *** *** **** *** recorded in the ***** belowData m * 150 * ; * * Mcart = 510 g θ * * ****** # * ****** s) ****** ****** *** * **************** 6 1 **************** *** * ************** **** 1 *************** **** 1 ********************************************************* **** ************** *** ******** ***** θC where * * (system about to **** **** ** = ** ****** * * **** * * 510g150= *** sinθSinθ= ****** *** * 171 *********** Plot ***** ** the horizontal **** *** azklJjjfayyugfaucjsuy ** the vertical **** fit **** **** ****** to * ******** **** ******* *** ***** and ************ ** **** ******** **** ** their theoretical values 7 6 5 4 3 2 1 ** * ** *************** ******* *** experimental ***** ** *** ** its *********** prediction ** Eq ************************* *** ***** ******** = change ** ** ****** in * * ************ = * ***************************** * ***** ** Sinⱺ against ************ ** plotted * straight **** is ******** with a ******** ******************************************