QUESTION

Prove that 2(cos^8theta-sin^8theta)=cos2theta+cos^32theta

It is first question in part B

Tutor has posted answer for $10.00. See answer's preview$10.00

* write **** ** step in *** ******** ***** Very ********

Tutor has posted answer for $10.00. See answer's preview$10.00
***** Key ******** *** *** ** ***** into *** parts(excluding the ****** ** ***** *** ***** part *** ** further ******** *** ***** ******* by *** ***** part *** ** ****** *********************** ^8\left(\theta ************ ************** ********************************** ^4\left(\theta ************ ************** ******************************* ************** \right)+\sin ^4\left(\theta \right)\:\right)\)=$$2\left(\cos ^2\left(\theta ************ ^2\left(\theta ******************************* ************** \right)+\sin ************** \right)\:\right)$$*$$\left(\cos ************** ************ ************** ************************** ************* ************************ ************** ************ ^4\left(\theta ************************ *** ************************ ************** ************ ************** ******************************* **************** \:\right)\right)^2+\left(cos^2\left(\theta ************************* *** inside **** ******************* ****************** ************* ********************** \:^2\left(\theta ****************************************** \:\right)\right)^2$$ =$$2\cos \left(2\theta \right)$$*$$\left(\frac{​​​​\left(1+cos\left(\theta *************************************************************************************** ********************************************* \left(2\theta \right)$$*\(\left(\frac{​​​​\left(1+cos^2\left(2\theta ******************************************** \left(2\theta ************ \left(1+\cos *************** *********************** \left(2θ\right)+\cos *****************************************