Answered You can buy a ready-made answer or pick a professional tutor to order an original one.
About trigonometry
Prove that 2(cos^8theta-sin^8theta)=cos2theta+cos^32theta
It is first question in part B
- @
- ANSWER
-
Tutor has posted answer for $10.00. See answer's preview
* write **** ** step in *** ******** ***** Very ********
- @
- ANSWER
-
Tutor has posted answer for $10.00. See answer's preview
***** Key ******** *** *** ** ***** into *** parts(excluding the ****** ** ***** *** ***** part *** ** further ******** *** ***** ******* by *** ***** part *** ** ****** *********************** ^8\left(\theta ************ ************** ********************************** ^4\left(\theta ************ ************** ******************************* ************** \right)+\sin ^4\left(\theta \right)\:\right)\)=\(2\left(\cos ^2\left(\theta ************ ^2\left(\theta ******************************* ************** \right)+\sin ************** \right)\:\right)\)*\(\left(\cos ************** ************ ************** ************************** ************* ************************ ************** ************ ^4\left(\theta ************************ *** ************************ ************** ************ ************** ******************************* **************** \:\right)\right)^2+\left(cos^2\left(\theta ************************* *** inside **** ******************* ****************** ************* ********************** \:^2\left(\theta ****************************************** \:\right)\right)^2\) =\(2\cos \left(2\theta \right)\)*\(\left(\frac{\left(1+cos\left(\theta *************************************************************************************** ********************************************* \left(2\theta \right)\)*\(\left(\frac{\left(1+cos^2\left(2\theta ******************************************** \left(2\theta ************ \left(1+\cos *************** *********************** \left(2θ\right)+\cos *****************************************