Waiting for answer This question has not been answered yet. You can hire a professional tutor to get the answer.
Find the equation of the circle with diameter AB where A and B are the points (-1,2) and (3,3) respectively?
##x^2+y^2-2x-5y+3=0##
Firstly, we can find the centre of the circle by finding the midpoint of ##AB##. Since it the midpoint or the centre ##(h,k)## cut AB with equal ratio;
##Centre (h,k) = ((-1+3)/2,(2+3)/2)##
##(h,k)=(1,5/2)##
Then we can find the radius , ##r## of the circle by using the equation;
##r^2=(x-h)^2+(y-k)^2##
##r^=sqrt((x-h)^2+(y-k)^2##
Substitute the coordinate ##(h,k)=(1,5/2)## and any of ##A## or ##B## coordinates into equation. In this calculation I choose ##B##.
##r^=sqrt((3-1)^2+(3-5/2)^2##
##r=sqrt(17/4)##=##sqrt17/2##
To find ##c##, we can use the equation ##c=h^2+k^2-r^2## and substitute ##(h,k)=(1,5/2)## and ##r=sqrt17/2## into it.
##c=(1)^2+(5/2)^2-(sqrt17/2)^2##
##c=3##
Then we know that the equation of circle is known as;
##x^2+y^2-2hx-2ky+c=0##
Substitute only ##(h,k)=(1,5/2)## and ##c=3## and we get;
##x^2+y^2-2(1)x-2(5/2)y+3=0##
##x^2+y^2-2x-5y+3=0##