Waiting for answer This question has not been answered yet. You can hire a professional tutor to get the answer.

QUESTION

Find the volume of the largest rectangular box in the first octant with three faces in the coordinate plane and one vertex in the plane x + 2y + 3z = 6 a. using the Second Partial Test . b. using Lagrange multipliers. How do I do this?

By solving for ##z##,

##x+2y+3z=6 Leftrightarrow z= 2-1/3x-2/3y##

Let ##(x,y,z)## be the vertex on the plane, where ##x,y,z>0##.

The volume ##V## of the rectangular box can be expressed as

##V=xyz=xy(2-1/3x-2/3y)=2xy-1/3x^2y-2/3xy^2##

Second Partial Test

Let us find critical points.

##V_x=2y-2/3xy-2/3y^2=2/3y(3-x-y)=0 Rightarrow x+y=3##

##V_y=2x-1/3x^2-4/3xy=1/3x(6-x-4y)=0 Rightarrow x+4y=6##

##Rightarrow (x,y)=(2,1)## is the only critical point.

Let us find second partials.

##V_{x x}=-2/3y Rightarrow V_{x x}(2,1)=-2/3##

##V_{y y}=-4/3x Rightarrow V_{yy}(2,1)=-8/3##

##V_{xy}=2-2/3x-4/3y Rightarrow V_{x y}(2,1)=-2/3##

By Second Partial Test,

##D(2,1)=(-2/3)(-8/3)-(-2/3)^2=4/3>0##

and

##V_{x x}(2,1)=-2/3<0##,

we may conclude that

##V(2,1)=(2)(1)(2-2/3-2/3)=4/3##

is the largest volume.

Lagrange Multiplier

Let ##g(x,y,z)=x+2y+3z##

##grad V=lambda grad g Rightarrow (yz,xz,xy)=lambda(1,2,3)##

##Rightarrow {(yz=1/2xz Rightarrow y=x/2),(yz=1/3xy Rightarrow z=x/3):}##

##Rightarrow g(x,x/2,x/3)=x+2(x/2)+3(x/3)=3x=6##

##Rightarrow x=2##, ##y=2/2=1##, ##z=2/3##

Hence,

##V(2,1,2/3)=2cdot1cdot2/3=4/3##

is the largest volume.

I hope that this was helpful.

Here's another source for the same solution, with some similar problems: http://people.whitman.edu/~hundledr/courses/M225/Exam2qSOL.pdf

Show more
LEARN MORE EFFECTIVELY AND GET BETTER GRADES!
Ask a Question