Waiting for answer This question has not been answered yet. You can hire a professional tutor to get the answer.
How do you evaluate the integral of ##(ln x)^2 dx##?
##x(lnx)^2 -2xlnx +2x+C##
To integrate ##(lnx)^2##, let ##x= e^y## so that ##dx= e^y dy##
##int (lnx)^2 dx= int y^2 e^ydy##. Now integrate by parts,
##y^2 e^y -int 2ye^y dy##. Now again integrate by parts,
##y^2 e^y -2[ ye^y- int e^ydy]##
##y^2e^y -2ye^y +2e^y## +C
##x(lnx)^2 -2xlnx +2x+C##