Waiting for answer This question has not been answered yet. You can hire a professional tutor to get the answer.
How do you find the integral of ##(t)sec^2(2t)dt##?
Use . Remember that ##tantheta=sintheta/costheta##.
Let ##f(t)=t## so that ##f'(t)=1##. Let ##g'(t)=sec^2(2t)## so that ##g(t)=1/2tan(2t)##.
Hence
##inttsec^2(2t)dt##
##=t/2tan(2t)-1/2inttan(2t)dt##
##=t/2tan(2t)-1/2intsin(2t)/cos(2t)dt##
##=t/2tan(2t)+1/4int(-2sin(2t))/cos(2t)dt##
##=t/2tan(2t)+1/4ln(cos(2t))+C##