Waiting for answer This question has not been answered yet. You can hire a professional tutor to get the answer.
How do you prove: ##cosx- (cosx/(1-tanx))= (sinxcosx)/(sinx-cosx)##?
##(sinx cosx) / (sinx - cosx) = cosx - [(cosx) / ( 1 - tan x)]##
##(sinx cosx) / (sinx - cosx) = cosx - {(cos x ) / [ 1 - ( sinx / cosx)]} ##
##(sinx cosx) / (sinx - cosx) = cosx - {(cosx) / [(cosx - sinx) / cosx]}##
##(sinx cosx) / (sinx - cosx) = cosx - {(cosx) [cosx / (cosx - sinx)]}##
##(sinx cosx) / (sinx - cosx) = cosx - [ (cos ^2 x) / (cosx - sinx)]##
##(sinx cosx) / (sinx - cosx) = [cosx( cosx - sinx ) - (cos ^2 x) ] / (cosx - sinx)##
##(sinx cosx) / (sinx - cosx) = (cos ^2 x - cosx sinx - cos ^2 x ) / (cosx - sin x)##
##(sinx cosx) / (sinx - cosx) = - (cosx sinx) / ( cosx - sinx )##
##(sinx cosx) / (sinx - cosx) = - (cosx sinx) / [ - ( sinx - cosx)]##
##(sinx cosx) / (sinx - cosx) = (-cosx sinx) / [ - ( sinx - cosx)]##
##(sinx cosx) / (sinx - cosx) = (cosx sinx) / ( sinx - cosx)##
Source here