Answered You can hire a professional tutor to get the answer.
import numpy as np import matplotlib.pyplot as plt #load an image I = plt.imread('C:\Users\Tina\Desktop\image.jpg') #display the shape of the array...
import numpy as np
import matplotlib.pyplot as plt
#load an image
I = plt.imread('C:UsersTinaDesktopimage.jpg')
#display the shape of the array and data type
print("I.shape=",I.shape,"nI.dtype=",I.dtype)
#convert to float data type and scale to [0..1] if necessary
if (I.dtype == np.uint8):
I = I.astype(float) / 256
#I.dtype should now be float
#if your image is color (shape HxWx3), convert to grayscale by averaging together R,G,B values
R = np.array(img[:, :, 0])
G = np.array(img[:, :, 1])
B = np.array(img[:, :, 2])
R = (R *.299)
G = (G *.587)
B = (B *.114)
np.mean
#display the image in the notebook using a grayscale colormap
plt.imshow(I,cmap=plt.cm.gray)
#force matplotlib to go ahead and display the plot now
plt.show()
#select out a 100x100 pixel subregion of the image
w,h = I.size
A = I.crop((w-50, h-50, w+50, h+50))
#display the selected subregion
plt.imshow(A,cmap=plt.cm.gray)
plt.show()
I am not sure if I am doing this right.