Answered You can buy a ready-made answer or pick a professional tutor to order an original one.

QUESTION

Name at least two general ways how to check cartesian for Gauss' theorem, if the normal vector point outwards.

Name at least two general ways how to check cartesian for Gauss' theorem, if the normal vector point outwards.

Show more
Tesh5
Tesh5
  • @
  • 204 orders completed
ANSWER

Tutor has posted answer for $10.00. See answer's preview

$10.00

************** ******* ** ********** ** ***** *** *** ******** answers CalculusAnsweredDeadline: ********** ***** ******** *** **************** ********* at ***** two general ways *** ** ***** ********* *** Gauss' theorem ** *** ****** ****** ***** ************ ** least *** ******* **** *** ** ***** ********* for Gauss' ******* ** the ****** ****** point *********** **** ****** ******************* ***** completedYOU **** ****** ********* ************ * ** * solid ****** ** ** *** *** S ** the ******* of B ******** **** ******** ******** ****** vector Gauss ********** ******* ****** **** for * ** ****** ***** * *** ********* equation ********** **** *** the theorem to hold *** *********** of the ******* must be pointing outwards **** *** ****** * otherwise we’ll get the ***** sign in *** ***** ******** **** **** ***** S ** *** boundary ** * then it ** ****** * ****** surface *** ** *** ** ******** In ***** ***** *** ******** ** * ************ ************** vector ***** ****** * boundary (flux) ** ***** ** the integral ** *** ********** of **** ****** ***** ****** *** region enclosed ** the boundaryApplications of ***** *********** *********** ********** *********** ******* ******** ** **** flux ****** a ******* ****** ******* ******* or sinks ** equal ** *** rate of **** storageIf *** flow ** * ********** ***** ** ************** **** *** net ******** **** ****** *** ******* ****** must be zeroAs net ******** **** ** * ***** ******** ****** *** ***** ** ** ******** one ******* ****** ********** *** ************ *** ********** ** **** ***** ** **** **** it ** incompressible ** ** ** ******** the ***** is ********* and **** ************** ******* can ** applied to *** vector ***** which ***** an ************** *** ******* ** *** ******* **** ** ******* ************* attraction and even examples in quantum ******* **** ** *********** densityExample 1: *** *** ********** theorem to calculate ***** * is *** surface ** *** *** B **** ******** (±1 ±2 ±3) **** ******** ******** ****** ****** *** *** * z) * ***** 2xyz3 ************* **** that *** ******* integral **** be difficult ** ******* ***** ***** *** six different components ** ************ ************** ** the *** sides of *** **** *** so *** ***** have ** ******* six different ********* ******* ***** ***** Theorem it ** easier ** ******* *** integral ********** BFirst ** compute (∇·F) * **** + **** * **** * **** *** ** integrate this ******** **** the ****** * ******* by ******* ** easy ** ************* ** ******** ***** * is *** ****** ***** by ** * y2 + ** * ********** ** could *********** *** ******* *** ******** *** ******* integral but ** is **** ****** ** *** *** divergence ******* ******** ********** theorem ************* ** Let * ** *** ****** ** R3 ** *** ********** z * ** * y2 and the ***** * * **** let * ** *** ******** of *** ****** * EvaluateSolution: ******** ********** ******* ******** ** ******* ** set ** *** ****** integral ** cylindrical coordinates:Overview ** ************** ********* *** divergence ******* ** ** helpful ** begin **** an overview ** the versions of *** Fundamental ******* ** ******** ** **** discussed:The Fundamental Theorem ** *************************************** theorem ******* *** ******** ** derivative **** over **** ******* **** ***** *** ****** ** a ********** ** f ********* ** the boundaryThe *********** ******* *** Line ****************************************** ** is the ******* ***** ** * *** ** ** the ******** point ** * *** *********** ******* *** **** ********* allows **** C ** ** * **** in * plane ** in space *** **** * line ******* ** *** ****** ** ** ***** ** *** ******** ** * ********** **** this ******* ******* ** ******** of derivative **** **** **** * to * difference ** * ********* ** *** ******** of CGreen’s ******* circulation ************************************ Qx−Py=curlF⋅k *** **** is * derivative ** ***** ********* ******* ******* the ******** ** derivative curlF over ****** region * ** an integral ** * **** *** ******** ** ********** ******* **** *********************************** ********** *** ********** ** * ********** of ***** the **** form ** Green’s theorem ******* *** integral ** ********** divF **** planar region D ** an ******** ** F **** the boundary ** ********** *********************************** ** ***** ** *** curl ** * ********** of ***** then ********* ******* ******* *** ******** of ********** ***** over surface * (not necessarily planar) ** ** ******** of * **** the boundary ** ******** *** ********** ********** divergence ******* ******* *** general ******* ** ***** ***** ******** ** ** ***** of ********** ** * ********** of ***** **** *** divergence ******* ******* * triple integral ** derivative divF over a ***** ** * **** ******** of F **** the ******** ** *** ***** More specifically *** ********** ******* ******* a flux ******** ** vector field * **** * ****** ******* S ** a ****** ******** ** *** divergence of F **** *** ***** ******** ** ******** ****** ********** ********** * be * ********* ****** closed ******* that ******** ***** E ** ***** ****** **** S ** ******** ******* and *** * ** * vector field with ********** partial *********** ** ** **** ****** ********** E ******* **** ********************************** *** *** divergence ******* relates * **** ******** ****** * ****** ******* S ** * triple integral **** solid * enclosed ** *** ************* that *** **** **** ** Green’s ******* ****** **** ∬DdivFdA=∫CF⋅Nds ********* the ********** theorem ** * ******* ** ********* ******* in *** higher ************ ***** ** *** ********** ******* ** beyond *** ***** ** this text However ** look at ** ******** proof **** ***** * ******* **** *** *** *** ******* ** **** *** does *** ***** the ******* with full rigor **** *********** ******* the ******** *********** ***** *** *** Stokes’ ******* ** ************ * ** a ***** *** with sides parallel to *** coordinate ****** ****** * ******* 688) *** *** ****** ** * have *********** ***** and ******* the edge ******* *** ΔxΔy *** Δz (Figure ******* *** ****** ****** *** ** *** top of *** *** ** * *** *** ****** ****** out ** *** ****** of the *** is **** The *** ******* ** F=⟨PQR⟩ **** * is * *** *** *** ******* **** −k is −R *** **** of *** *** of *** *** **** *** ****** ** *** **** *** is ************ 688 (a) * small *** * inside surface E *** ***** ******** ** the ********** ****** *** *** * *** **** ******* ΔxΔy *** *** *** ** we look at the **** **** ** * ** *** that ***** ***** ** *** center ** *** *** ** *** to *** *** of *** box ** must ****** * ******** distance ** ***** ** from (xyz) Similarly ** get ** the ****** ** *** *** ** **** ****** a ******** ***** **** **** (xyz)The flux *** ** *** *** ** the *** *** ** ************ ** R(xyz+Δz2)ΔxΔy (Figure ******* *** the **** *** ** *** bottom of *** *** ** ********************** If ** ****** the ********** ******* ***** ****** as *** **** *** *** **** ** *** ******** direction can ** ************ by ΔRΔxΔy HoweverΔRΔxΔy=(ΔRΔz)ΔxΔyΔz≈(∂R∂z)ΔVTherefore the *** **** in the vertical direction *** ** ************ by ************* Similarly *** net **** ** *** x-direction *** be approximated ** ************* and the *** flux ** *** *********** *** ** ************ by ************* ****** *** fluxes ** all ***** ********** ***** ** ************* ** the total **** *** of the ********* ************************************************** ************* ******* *********** ***** ** *** ***** of the total **** ** *** ****** ** the *** ******* ** ******* *** ** ******* **** *** *** ***** boxes ************* E ** ************* ********** ** *** ***** **** *** *** ** divFΔV **** *** *** ***** ***** approximating E ** *** *** ** *** ****** over all ***** boxes Just ** ** *** informal proof ** ********* ******* ****** ***** ****** over *** *** boxes ******* ** the *********** ** a lot of the ***** If an ************* *** ****** a **** **** ******* ************* box **** *** flux **** *** **** is the ******** ** *** **** **** *** ****** face of *** adjacent box ***** *** integrals ****** out When ****** ** *** the fluxes *** **** **** ********* **** ******* are *** ********* **** the faces approximating *** ******** ** * As *** ******* ** *** ************* ***** shrink to **** **** ************* ******* *********** ***** ** the flux over S□Example 677Verifying *** ********** ************* the ********** ******* *** ****** ***** ********************* *** ******* S that ******** ** cone ***************** and *** ******** top of *** **** **** *** ********* ******* ****** **** ******* is ********** orientedCheckpoint ********* the ********** ******* for vector ***** ************************* *** surface * ***** ** *** cylinder x2+y2=10≤z≤3 **** *** ******** *** *** ****** of *** cylinder ****** **** * ** ********** ************** **** the ********** ** ********** field * ** ***** * is a measure ** the ********************* ** the ***** ** * ** F ********** *** ******** ***** ** * ***** then the divergence *** ** ******* ** ** the **** per **** ****** of *** fluid ******* *** **** *** rate per **** ****** ******* ** The ********** ******* confirms **** ************** ** see this *** * be * ***** *** *** ** ** * **** ** ***** ****** * ******** ** P ******* 689) *** Sr ** *** boundary ****** ** ** Since *** radius ** small *** F is ********** ***************** *** all ***** ****** * ** *** **** ********* *** flux ****** ** *** ** ************ ***** *** divergence theorem:∬SrF⋅dS=∭BrdivFdV≈∭BrdivF(P)dVSince divF(P) ** a ******************************************** **** *********** *** be ************ ** ************ **** ************* **** better ** the ****** ******* to **** *** ********************************************** equation **** **** *** ********** ** * ** the *** **** ** ******* flux ** *** ***** *** **** ************ *** **** ** ** ***** ****** * ******** ** ****** *** ********** ********** ********** ******* ********** between the **** ******** ** ****** ******* * and * ****** ******** **** *** solid enclosed ** * Therefore *** theorem ****** ** ** ******* **** integrals ** triple ********* **** ***** ********** be ********* ** ******* ** translating *** flux integral **** * ****** integral and vice ************ *********** *** ********** **************** *** ******* ******** ********** where * is ******** **************** including *** ******** top *** ****** *** F=⟨x33+yzy33−sin(xz)z−x−y⟩Checkpoint ****** *** divergence theorem ** ********* flux integral ********** where S is *** ******** ** *** *** given by 0≤x≤21≤y≤40≤z≤1 *** F=⟨x2+yzy−z2x+2y+2z⟩ **** the ********* ************** *********** *** ********** ********** v=⟨−yzxz0⟩ ** *** ******** ***** of * fluid *** * ** *** ***** cube given ** *************************** *** *** * ** the boundary ** **** **** **** *** ********* ******* **** the **** **** ** *** fluid ****** ******* *** ****** ***** ************************** ****** ************* ** the ******** ***** ** * ***** *** * be the ***** cube given ** *************************** *** *** S ** *** boundary ** this **** **** *** following figure) **** the flow **** of *** ***** across ******** *** *********** * ********** *********** ** *** ********** ******* *** * be * ********* ****** closed ******* and let * ** * vector ***** defined ** ** **** ****** ********** *** surface enclosed by * ** F has *** **** *********************** then *** divergence of * ** zero ** *** ********** theorem the **** ** * across * is also **** **** ***** ******* **** ********* incredibly easy to calculate *** ******* ******* ** ****** to ********* *** flux ******** ********** ***** * ** a cube andF=⟨sin(y)eyzx2z2cos(xy)esinx⟩Calculating the **** ******** ******** would ** ********* ** *** ********** ***** techniques ** ******* previously At *** very ***** ** ***** **** ** ***** *** **** integral **** *** integrals *** *** **** **** of *** **** But ******* *** ********** ** this ***** ** zero the ********** ******* immediately ***** **** *** **** ******** ** ****** can *** *** the divergence ******* ** justify *** physical ************** ** ********** **** ** discussed ******* ****** that if * ** * continuous three-dimensional vector ***** *** P ** a ***** in *** domain ** * **** the ********** ** F ** * ** * ******* ** *** ********************* ** F at * ** * represents *** velocity field ** * ***** **** the ********** of * at P ** * ******* ** *** *** **** rate *** ** ***** P **** **** of fluid *** ** P **** *** **** of ***** in ** ** To see how the ********** theorem ********* this ************** *** ** ** * **** ** **** ***** ****** * **** ****** P *** assume that Br ** ** *** ****** of * Furthermore ****** **** ** *** a ******** ******* orientation ***** the ****** of ** ** small *** * ** continuous *** ********** ** * ** approximately ******** on ** **** ** if **** ** *** ***** ** ** then divF(P)≈divF(P′) *** ** ****** *** ******** ****** of ** ** can approximate the flux ****** Sr ***** *** ********** ******* ** *************************************************************** ** ****** the ****** * ** **** *** * ***** the quantity ************ gets arbitrarily close ** *** **** ********************************************* ** can ******** the ********** ** * ** ********* *** *** rate of ******* **** *** **** volume at * Since ********************* ** ** informal **** *** *** *** **** ** outward **** *** **** volume ** **** justified the physical ************** ** divergence ** discussed ******* *** ** have **** *** ********** ******* ** give **** *************

or Buy custom answer
LEARN MORE EFFECTIVELY AND GET BETTER GRADES!
Ask a Question