Waiting for answer This question has not been answered yet. You can hire a professional tutor to get the answer.

QUESTION

Prove the following syllogisms valid first using natural deduction and then using the method of tableaux:

  • 7.9.1.Prove the following syllogisms valid first using natural deduction and then using the method of tableaux:First Figure, Moods EAE, EIO
  • Second Figure, Moods AEE, AOO
  • Third Figure, Moods AII, OAO
  • Fourth Figure, Moods AEE, IAI
  • 7.9.2.Construct formal proofs for all the arguments below. Use equivalence rules, truth functional arguments, and the rules of instantiation and generalization. These may also be proven using the method of tableaux.1.∀x(Ax ⊃ ¬Bx) ∴ ¬∃x(Ax ∧ Bx)
  • 2.∀x(Mx ⊃ ¬Px), ∃x(Sx ∧ Mx) ∴ ∃x(Sx ∧ ¬Px)
  • 3.∃xAx ∨ ∃x(Bx ∧ Cx), ∀x(Ax ⊃ Cx) ∴ ∃xCx
  • 4.∀xLx ∴ ∀x(Px ⊃ Lx)
  • 5.∀x(¬Fx ⊃ Gx), ¬∃xFx ∴ ∀xGx
  • 6.∀x(Cx ⊃ ¬Sx), Sa ∧ Sb ∴ ¬(¬Ca ⊃ Cb)
  • 7.∃xCx ⊃ ∃x(Dx ∧ Ex), ∃x(Ex ∨ Fx) ⊃ ∀xCx ∴ ∀x(Cx ⊃ Gx)
  • 8.∀x(Fx ⊃ Gx), ∀x[(Fx ∧ Gx) ⊃ Hx] ∴ ∀x(Fx ⊃ Hx)
  • 9.∃xLx ⊃ ∀x(Mx ⊃ Nx), ∃xPx ⊃ ∀x ¬Nx ∴ ∀x[(Lx ∧ Px) ⊃ ¬Mx]
  • 10.∀x(Fx ≡ Gx), ∀x[(Fx ⊃ (Gx ⊃ Hx)], ∃xFx ∨ ∃xGx ∴ ∃xHx
  • 11.∃x(Cx ∨ Dx), ∃xCx ⊃ ∀x(Ex ⊃ Dx), ∃xEx ∴ ∃xDx
  • 12.∀x[(¬Dx ⊃ Rx) ∧ ¬(Dx ∧ Rx)], ∀x[Dx ⊃ (¬Lx ⊃ Cx)], ∀x(Cx ⊃ Rx) ∴ ∀x(Dx ⊃ Lx)
  • 7.9.3.Using the method of tableaux, give an assignment of values for the predicates of each argument that shows that each argument is invalid.1.∀x(Ax ⊃ Bx), ∀x(Ax ⊃ Cx) ∴ ∀x(Bx ⊃ Cx)
  • 2.∃x(Ax ∧ Bx), ∀x(Cx ⊃ Ax) ∴ ∃x(Cx ∧ Bx)
  • 3.∀x[(Cx ∨ Dx) ⊃ Ex], ∀x[(Ex ∧ Fx) ⊃ Gx] ∴ ∀x(Cx ⊃ Gx)
  • 4.∃xMx, ∃xNx ∴ ∃x(Mx ∧ Nx)
  • 5.∀x[Dx ∨ (Ex ∨ Fx)] ∴ ∀xDx ∨ (∀xEx ∨ ∀xFx)
  • 6.∃x(Cx ∧ ¬Dx), ∃x(Dx ∧ ¬Cx) ∴ ∀x(Cx ∨ Dx)
Show more
LEARN MORE EFFECTIVELY AND GET BETTER GRADES!
Ask a Question