Answered You can hire a professional tutor to get the answer.

QUESTION

Question: 1) Let A = [1 -2 1 1] [-1 2 0 1] [2 -4 1 0] a) Find all solutions of the system A [x y z w] T = [-2 6 -8] T . b) Find rank(A) and the...

Question:

1) Let A = [1  -2  1  1] [-1  2  0  1] [2  -4  1  0]

 a) Find all solutions of the system A [x  y  z  w]T = [-2  6  -8]T .     b) Find rank(A) and the dimension of the null space of A, {X :AX=0}.

 c) Find basis of row(A), the space spanned by the rows of A.        d) Find basis of col(A), the space spanned by the columns of A.     e) Find ker(A) = {X :AX=0}.

 f) Show that the set of all transposes of the vectors of row(A) constitutes the orthogonal complement of ker(A).

2) If possible, find conditions on parameter k such that the following system has no solutions, one solution, or infinitely many solutions. Solve the system when possible.

           3x + 2y + z = 12

                  4x + y = 14

        −2x + 2y + 2z = k

3) Matrix A= [-1  -1  1] [-2  0  2] [-1  1  1] has the following eigenvalues and eigenvectors. λ1 = 2, with 2-eigenvector [0  1  1]T, λ2= 0, with 0-eigenvector [1  0  1]T, λ3 = -2, with -2 -eigenvector [1  1  0]T. 

a) Find a diagonal matrix D and an invertible matrix P such that A = PDP-1.  b) With P as in from part (a) find P-1.  c) Find A10

4)  Let B = [3  2  1] [0  1  0] [0  2  2]

(a) Find the characteristic polynomial of B.   (b) List all eigenvalues of B.  (c) Find an eigenvector of B corresponding to its smallest eigenvalue. 

5)  Suppose A is an n × n matrix. Recall that null(A) is the dimension of the null space of A (i.e., the space of solutions to the equation AX = 0)

a) What is the exact relation between n, rank(A) and null(A) (circle the correct answer)?

(i) rank(A) + null(A) = n    (ii) rank(A) + n = null(A)    (iii) n ≤ rank(A) + null(A)    (iv) n null(A) = rank(A)   (v) None    (vi) null(A) + n = rank(A)    (vii) n null(A) = rank(A)                 (viii) n + null(A) + rank(A)        (ix) Other.

b) Using your answer to (a), prove that AX = 0 has a nontrivial solution if and only if AX = B does not have a solution for some n × 1 matrix B.

6) Matrix A has characteristic polynomial CA(x) = (x − 2)(x + 1)2. 

a) The size of A is  (circle the correct answer)  (a) 3×3  (b) 2×2  (c) 4×4  (d) 2×3  (e) Don't know.  

b) Can you conclude from the above information only that A is invertible, and why?              (YES NO) 

c) Can you conclude from the above information only that A is diagonalizable, and why?     (YES NO) 

d) Assuming A is diagonalizable, write a diagonal matrix that A is similar to. (No need to show your work.)

Show more
LEARN MORE EFFECTIVELY AND GET BETTER GRADES!
Ask a Question