Waiting for answer This question has not been answered yet. You can hire a professional tutor to get the answer.

QUESTION

Regression Analysis

QUESTION 1

  1. Please look at the following output from the regression. 

    What does the value of R-square tell us about our model? 

    Note: It is not sufficient to just provide some general answers. Use the numbers from the output, and write your answers specific to our regression model.

    Model Summary

    Model

    R

    R Square

    Adjusted R Square

    Std. Error of the Estimate

    1

    .771a

    .594

    .580

    21.741

    a. Predictors: (Constant), DENSITY

         -- Font family --Andale MonoArialArial BlackBook AntiquaComic Sans MSCourier NewGeorgiaHelveticaImpactSymbolTahomaTerminalTimes New RomanTrebuchet MSVerdanaWebdingsWingdings -- Font size --1 (8pt)2 (10pt)3 (12pt)4 (14pt)5 (18pt)6 (24pt)7 (36pt)                      -- Format --HeadingSub Heading 1Sub Heading 2ParagraphFormatted Code -- Font family -- -- Font size --                                                 Regression                             

    Path: p

    Words:0

12.5 points   

QUESTION 2

  1. Please look at the following output from the regression. 

    What do the value of F-test and its P-value tell us about our model? 

    Note: It is not sufficient to just provide some general answers. Use the numbers from the output, and write your answers specific to our regression model.

    ANOVAa

    Model

    Sum of Squares

    df

    Mean Square

    F

    Sig.

    1

    Regression

    20747.246

    1

    20747.246

    43.895

    .000b

    Residual

    14179.629

    30

    472.654

    Total

    34926.875

    31

    a. Dependent Variable: SALES

    b. Predictors: (Constant), DENSITY

         -- Font family --Andale MonoArialArial BlackBook AntiquaComic Sans MSCourier NewGeorgiaHelveticaImpactSymbolTahomaTerminalTimes New RomanTrebuchet MSVerdanaWebdingsWingdings -- Font size --1 (8pt)2 (10pt)3 (12pt)4 (14pt)5 (18pt)6 (24pt)7 (36pt)                      -- Format --HeadingSub Heading 1Sub Heading 2ParagraphFormatted Code -- Font family -- -- Font size --                                                 Regression                             

    Path: p

    Words:0

12.5 points   

QUESTION 3

  1. The regression coefficient output is shown below. 

    Does Density matter in terms of explaining sales? Can you provide an explanation of the coefficient estimate for Density? (Note: the unit of Density is number of homes per acre, and the unit of Sales is dollars per thousand homes ). 

    Coefficientsa

    Model

    Unstandardized Coefficients

    Standardized Coefficients

    t

    Sig.

    B

    Std. Error

    Beta

    1

    (Constant)

    141.525

    9.109

    15.538

    .000

    DENSITY

    -12.893

    1.946

    -.771

    -6.625

    .000

    a. Dependent Variable: SALES

    For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac).     -- Font family --Andale MonoArialArial BlackBook AntiquaComic Sans MSCourier NewGeorgiaHelveticaImpactSymbolTahomaTerminalTimes New RomanTrebuchet MSVerdanaWebdingsWingdings -- Font size --1 (8pt)2 (10pt)3 (12pt)4 (14pt)5 (18pt)6 (24pt)7 (36pt)                      -- Format --HeadingSub Heading 1Sub Heading 2ParagraphFormatted Code -- Font family -- -- Font size --                                                 Regression                             

    5

    Path: p

    Words:28

12.5 points   

QUESTION 4

  1. Managers suspect that the effect of Density on Sales can be nonlinear; in other words, as density increases, there will a decreasing marginal effect on density. To test this idea, they ran an additional regression, with Density and Density_Squared (i.e. Density*Density) as the independent variables (again, Sales as the dependant variable), and the output of the new regression shows below.

    Can you explain what the R_square and F-test tell us about the new model? Is the new model better than the model with only Density as the independent variable?

    Model Summary

    Model

    R

    R Square

    Adjusted R Square

    Std. Error of the Estimate

    1

    .910a

    .829

    .817

    14.354

    a. Predictors: (Constant), Density2, DENSITY

    ANOVAa

    Model

    Sum of Squares

    df

    Mean Square

    F

    Sig.

    1

    Regression

    28951.384

    2

    14475.692

    70.253

    .000b

    Residual

    5975.491

    29

    206.051

    Total

    34926.875

    31

    a. Dependent Variable: SALES

    b. Predictors: (Constant), Density2, DENSITY

    Coefficientsa

    Model

    Unstandardized Coefficients

    Standardized Coefficients

    t

    Sig.

    B

    Std. Error

    Beta

    1

    (Constant)

    212.595

    12.768

    16.650

    .000

    DENSITY

    -47.293

    5.601

    -2.827

    -8.444

    .000

    Density2

    3.419

    .542

    2.113

    6.310

    .000

    a. Dependent Variable: SALES

         -- Font family --Andale MonoArialArial BlackBook AntiquaComic Sans MSCourier NewGeorgiaHelveticaImpactSymbolTahomaTerminalTimes New RomanTrebuchet MSVerdanaWebdingsWingdings -- Font size --1 (8pt)2 (10pt)3 (12pt)4 (14pt)5 (18pt)6 (24pt)7 (36pt)                      -- Format --HeadingSub Heading 1Sub Heading 2ParagraphFormatted Code -- Font family -- -- Font size --                                                 Regression                             

    Path: p

    Words:0

12.5 points   

QUESTION 5

  1. (This is a Bonus Question)

    Continuing from Question 4, can you explain the meaning of the coefficient estimate of Density_Squared (i.e. Density*Density)? (Hint: the effect of Density on Sales is negative, while the effect of Density_Squared on Sales is positive). 

Show more
LEARN MORE EFFECTIVELY AND GET BETTER GRADES!
Ask a Question