QUESTION

# Saint GBA334 module 5 quiz / Saint GBA334 module 5 quiz

Question

Question 1.1.

Consider the following linear programming problem:

Maximize 12X + 10Y

Subject to: 4X + 3Y ≤ 480

2X + 3Y ≤ 360

All variables ≥ 0

What is the optimum solution of (X,Y)?

(Points : 5)

X=480, Y = 360

X=360, Y-480

X=60, Y=80

X=80, Y=60

None of the above

Question 2.2.

When appropriate, the optimal solution to a maximization linear programming problem can be found by graphing the feasible region and

(Points : 5)

finding the profit at every corner point of the feasible region to see which one gives the highest value.

moving the isoprofit lines towards the origin in a parallel fashion until the last point in the feasible region is encountered.

locating the point that is highest on the graph.

None of the above

All of the above

Question 3.3.

An LP formulation typically requires finding the maximum value of an objective while simultaneously maximizing usage of the resource constraints.

(Points : 5)

True

False

Question 4.4.

Infeasibility in a linear programming problem occurs when

(Points : 5)

there is an infinite solution.

a constraint is redundant.

more than one solution is optimal.

the feasible region is unbounded.

there is no solution that satisfies all the constraints given.

Question 5.5.

If the addition of a constraint to a linear programming problem does not change the solution, the constraint is said to be

(Points : 5)

unbounded.

non-negative.

infeasible.

redundant.

bounded.

Question 6.6.

Solve the following linear programming problem:

Maximize 10X + 1Y

Subject to: 4X + 3Y ≤ 36

2X + 4Y ≤ 40

Y ? 3

What is the maximum profit?

(Points : 5)

36

40

3

6.75

70.5

Question 7.7.

In the term linear programming, the word programming comes from the phrase "computer programming."

(Points : 5)

True

False

Question 8.8.

The difference between the left-hand side and right-hand side of a greater-than-or-equal-to constraint is referred to as

(Points : 5)

surplus.

constraint.

slack.

None of the above

Question 9.9.

Consider the following linear programming:

Maximize 10X + 1Y

Subject to: 4X + 3Y ≤ 36

2X + 4Y ≤ 40

Y ≤ 3

What is the value of X and Y maximizing profit?

(Points : 5)

X = 36, Y = 40

X = 40, Y = 36

X = 70.5, Y = 6.75

X = 6.75, Y = 3

X = 3, Y = 6.75

Question 10.10.

The difference between the left-hand side and right-hand side of a less-than-or-equal-to constraint is referred to as

(Points : 5)

surplus.

constraint.

slack.

slack.

None of the above

Question 11.11.

Which of the following is not an assumption of LP?

(Points : 5)

simultaneity

certainty

proportionality

divisibility

Question 12.12.

A feasible solution to a linear programming problem

(Points : 5)

must be a corner point of the feasible region.

must satisfy all of the problem's constraints simultaneously.

need not satisfy all of the constraints, only the non-negativity constraints.

must give the maximum possible profit.

must give the minimum possible cost.

Question 13.13.

Sensitivity analysis may also be called

(Points : 5)

postoptimality analysis.

parametric programming.

optimality analysis.

All of the above

None of the above

Question 14.14.

An objective function is necessary in a maximization problem but is not required in a minimization problem.

(Points : 5)

True

False

Question 15.15.

Management resources that need control include machinery usage, labor volume, money spent, time used, warehouse space used, and material usage.

(Points : 5)

True

False

Question 16.16.

A constraint with zero slack or surplus is called a

(Points : 5)

nonbinding constraint.

resource constraint.

binding constraint.

nonlinear constraint.

linear constraint.

Question 17.17.

The set of solution points that satisfies all of a linear programming problem's constraints simultaneously is defined as the feasible region in graphical linear programming.

(Points : 5)

True

False

Question 18.18.Sensitivity analysis enables us to look at the effects of changing the coefficients in the objective function, one at a time.(Points : 5)

True

False

Question 19.19.

Consider the following linear programming problem:

Maximize 12X + 10X

Subject to: 4X + 3Y ? 480

2X + 3Y ? 360

All variables ? 0

The maximum possible value for the objective function is

(Points : 5)

360.

480.

1520.

1560.

None of the above

Question 20.20.

In a maximization problem, when one or more of the solution variables and the profit can be made infinitely large without violating any constraints, the linear program has

(Points : 5)

an infeasible solution.

an unbounded solution.

a redundant constraint.

alternate optimal solutions.

None of the above

• @
• 169 orders completed

Tutor has posted answer for $16.00. See answer's preview$16.00

*********

******** 11

******** *** ********* linear *********** *********

******** *** * ****

******* to: ** * 3Y **** ****

2X * ** **** ****

*** ********* **** ****

is the ******* ******** ** (XY)? *******

: *** *****

* = **** *****

Y-480 X=60

Y=80 ****

Y=60 ****

** *** above ********

22 ****

*********** the ******* ******** to * ************ ****** *********** problem can ** ***** ** ******** the ******** ****** **** *******

* 5) *******

*** ****** at every corner ***** of the ******** ****** ** *** ***** *** gives the ******* ****** ******

*** ********* ***** ******* *** ****** in * parallel fashion ***** *** last point in *** feasible ****** is ************ ********

the ***** that ** ******* ** *** ****** ****

** *** ****** All

** *** ****** ********

*** An

** formulation typically ******** ******* *** maximum ***** ** ** objective ***** ************** maximizing ***** of *** ******** ************ *******

* 5) True

False

********

*** *************

** * ****** *********** ******* ****** ***** (Points

* *** there

** an ******** ********* a

********** ** redundant ****

**** one ******** is optimal the

******** ****** ** ********** *****

** ** ******** **** ********* all *** *********** ****** Question

55 **

*** addition ** a ********** to * ****** programming problem **** *** change *** solution *** constraint ** **** to *** *******

* *** unbounded

*************

***********

redundant

********

********

*** *****

the ********* ****** programming ********* ********

*** * 1Y Subject

*** ** + ** **** 36 2X

* ** ≤ 40 *

? 3 ****

** the ******* ******** *******

: *** ***

***

**

****

****

********

*** In

the **** ****** programming *** **** programming ***** from *** phrase "computer ****************** *******

* *** *****

False

********

88 The

********** ******* *** left-hand **** *** right-hand **** ** a greater-than-or-equal-to ********** ** ******** ** *** (Points

: *** ********

***********

******

******

price ****

** *** ****** Question

*** Consider

*** ********* ****** programming: ********

*** + 1Y *******

*** 4X * ** **** *** 2X

* ** **** 40 *

≤ ** ****

** the ***** ** * *** * ********** ******** *******

* *** *

= ** * * 40 *

* 40 * = 36 X

* *** Y = **** *

* 675 Y * ** X

* 3 Y * **** ********

1010 ***

********** ******* *** left-hand side and ********** **** ** a ********************* ********** ** ******** ** *** *******

: *** ********

***********

slack

******

******

price

None

** the

****** Question 1111 Which

** ***

********* ** *** ** ********** ** **** (Points * 5)

************* ********** ****************

divisibility

***********

********

*****

*

******** solution

** * ****** *********** ******** ******* * 5)

**** ** a

corner point ** *** ******** ******* must satisfy ***

** *** ************* *********** simultaneously **** *** satisfy

all ** *** *********** **** the ************** constraints **** **** ***

******* ******** profit must give ***

minimum ******** ***** ******** ***** Sensitivity

******** ***

also ** ******* (Points * ***

************** analysis **********

programming **********

analysis All

of ***

****** **** ** ***

above ******** 1414 **

********* ********

** necessary ** a ************ ******* *** is *** ******** ** * ************ ******** (Points * ***

***** ****** ********

1515

**********

resources ****

**** ******* ******* ********* usage ***** ****** ***** ***** **** **** ********* ***** **** and ******** ****** (Points * 5)

***** ****** ********

1616

*

********** ****

**** ***** ** ******* ** called ** (Points * ***

********** *********** ********

constraint *******

constraint *********

*********** ******

constraint ********

***** The

set **

******** ****** **** satisfies all ** a linear programming problem's *********** ************** ** ******* as *** ******** ****** ** ********* ****** ************ ******* * 5)

***** ****** ********

***************

********

enables ** ** **** at *** ******* ** ******** *** ************ ** *** ********* function one ** * time(Points * *** ***** False ********

*****

********

the *********

****** *********** ********* ******** *** +

**** ******* *** **

* 3Y * **** 2X * **

? 360 *** variables *

*** maximum ******** value

*** *** ********* function *** (Points : *** ****

**** ***** 1560

None

**

***

******

******** ***** In *

maximization *******

**** *** ** **** ** *** ******** ********* *** the ****** can ** **** infinitely large ******* ********* *** *********** *** linear program **** (Points * 5) **

********** ********* an

********* ********* *

redundant constraint *********

******* ********** ****

of *** *****