solve using laplace transform y"+y=cos(2t) y=(0

solve using laplace transform

y"+y=cos(2t)

y=(0)=2

y'(0)=1

Show more >
  • deepakdohare333
    deepakdohare333
    5 orders completed
    $10.00
    ANSWER
    Tutor has posted answer for $10.00. See answer's preview

    **** ****

    Click here to download attached files:

    laplace transform.docx

    Buy
  • $10.00
    ANSWER
    Tutor has posted answer for $10.00. See answer's preview

    **** ********

    ******

    **** ******* the ******** solution ** *** lapalce transfrom ********

    Click here to download attached files:

    Laplace solution.docx

    Buy
  • Dr James Andrews
    Dr James Andrews
    1 orders completed
    $10.00
    ANSWER
    Tutor has posted answer for $10.00. See answer's preview

    **** ******* ***** **** *** ******* transform of each **** and ***** *** ******* conditions

    **********

    * *********** = ***** 2t) L(y")

    =

    *********** * ***** * ********* * *********** * ** **** *

    ***** ***** ***

    * ********** + ******** = s/(s² + *** *********** -

    *

    * *********** * ********** * *** ***** *** *****

    ********

    * ************ *

    s

    + ********** * *** **** * ** + s/(s²

    *

    4)]/(s² * w²) Y(s) * s/(s² * ******** *

    ***********

    + **************** * 4)] ***** you **** **** *** can just

    ****

    the inverse ** ** **** ** *** ******* form ********** have ** ** ******* fraction ****** twice so add *** ********* **** one ***** ********* terms ** ** **** * ******** ****

    *

    ****** ************ Y(s) * ********** * ** * ************ + ****************

    *

    4)] * ******** * ************* + **************** * 4)] ******* partial

    fraction

    ************** **** * *** * *********** * ********

    +

    (cs + d)/(s² *

    4)

    * **** * b)(s² + ** * (cs * ********** * ******************* +

    w²)(s²

    * **** * (as³ + *** + ******** + 4b + cs³ * ********* * ds²

    *

    ******************* + w²)(s² * **** * *** * c)s³ + ** + d)s² * *** + cw²) * ** +

    *******************

    * **************** + 4)] Equating ************ s³ * ** = (a * ********* * (b + ********* + *** *

    **********

    * **

    *

    ********* ******* ************ ******* ******** * * * * c ** 5 * ** * ********* * * 4(1

    *

    ** * *********

    *

    * * - ** * *********

    * = 1/(w² - 4) --->

    ***

    we **** *** ******* **** * restriction

    ** ** ****** * * * *

    ********** - 4) s²: = b * ** ********* = 4b * dw² * -4d + dw²

    * * b * **** * [1

    -

    ********** * 4)]/(s² * ********

    + *********** * 4)]/(s² *

    4)

    *** **** *** *******

    LT L⁻¹[Y(s)] * ************ *

    **********

    * ************ * ********* * ********************* * ************ * *** **************** * ***** L⁻¹[1 *

    **********

    - ************ * ********* *

    **

    * ********** * *** ********************* * w²)] * *** * ********** * ************** L⁻¹[1/(w² *

    4)]/(s²

    * ** =

    [1/(w² * 4)] ********************* + *** * ******************* * *********** **** * {[1 * ********** * ************* * ******************* * 4)]sin(2t) *

    ********* * sin(wt)/[w(w² - ** + sin(2t)/[2(w² - 4) Combine to *** ******** **** *********** **********

    *

    *** **** = ********** * 4)sin(wt) * ******** * * ********************

    *

    **** = ********** * ********** * * ******************** * 4)]

    *

    ********* * ********* * ***************** - **

    Click here to download attached files:

    Best Answer.docx

    Buy

Learn more effectively and get better grades!

Do my homework