QUESTION

# solve using laplace transform y"+y=cos(2t) y=(0

solve using laplace transform

y"+y=cos(2t)

y=(0)=2

y'(0)=1

• @

Tutor has posted answer for $10.00. See answer's preview$10.00

**** ********

******

**** ******* the ******** solution ** *** lapalce transfrom ********

or
• @
• 3 orders completed

Tutor has posted answer for $10.00. See answer's preview$10.00

**** ******* ***** **** *** ******* transform of each **** and ***** *** ******* conditions

**********

* *********** = ***** 2t) L(y")

=

*********** * ***** * ********* * *********** * ** **** *

***** ***** ***

* ********** + ******** = s/(s² + *** *********** -

*

* *********** * ********** * *** ***** *** *****

********

* ************ *

s

+ ********** * *** **** * ** + s/(s²

*

4)]/(s² * w²) Y(s) * s/(s² * ******** *

***********

+ **************** * 4)] ***** you **** **** *** can just

****

the inverse ** ** **** ** *** ******* form ********** have ** ** ******* fraction ****** twice so add *** ********* **** one ***** ********* terms ** ** **** * ******** ****

*

****** ************ Y(s) * ********** * ** * ************ + ****************

*

4)] * ******** * ************* + **************** * 4)] ******* partial

fraction

************** **** * *** * *********** * ********

+

(cs + d)/(s² *

4)

* **** * b)(s² + ** * (cs * ********** * ******************* +

w²)(s²

* **** * (as³ + *** + ******** + 4b + cs³ * ********* * ds²

*

******************* + w²)(s² * **** * *** * c)s³ + ** + d)s² * *** + cw²) * ** +

*******************

* **************** + 4)] Equating ************ s³ * ** = (a * ********* * (b + ********* + *** *

**********

* **

*

********* ******* ************ ******* ******** * * * * c ** 5 * ** * ********* * * 4(1

*

** * *********

*

* * - ** * *********

* = 1/(w² - 4) --->

***

we **** *** ******* **** * restriction

** ** ****** * * * *

********** - 4) s²: = b * ** ********* = 4b * dw² * -4d + dw²

* * b * **** * [1

-

********** * 4)]/(s² * ********

+ *********** * 4)]/(s² *

4)

*** **** *** *******

LT L⁻¹[Y(s)] * ************ *

**********

* ************ * ********* * ********************* * ************ * *** **************** * ***** L⁻¹[1 *

**********

- ************ * ********* *

**

* ********** * *** ********************* * w²)] * *** * ********** * ************** L⁻¹[1/(w² *

4)]/(s²

* ** =

[1/(w² * 4)] ********************* + *** * ******************* * *********** **** * {[1 * ********** * ************* * ******************* * 4)]sin(2t) *

********* * sin(wt)/[w(w² - ** + sin(2t)/[2(w² - 4) Combine to *** ******** **** *********** **********

*

*** **** = ********** * 4)sin(wt) * ******** * * ********************

*

**** = ********** * ********** * * ******************** * 4)]

*

********* * ********* * ***************** - **