Answered You can buy a ready-made answer or pick a professional tutor to order an original one.
The questions in attached files are about complex variables and triangle inequality, they are very simple, but you need to show the solutions step by step
The questions in attached files are about complex variables and triangle inequality, they are very simple, but you need to show the solutions step by step
- @
- 723 orders completed
- ANSWER
-
Tutor has posted answer for $10.00. See answer's preview
******* 5Use *** ********** ** ******* ** * ******* ****** ** **** ************ and ******** we have *** ** *** 1/ z2 ***** z1 ****** **** ********** and ********** So(1/ z1 )*( ** ** ***** ** ******** ** ******** ** ***** ** ***** ** ******* the ********** ** inverse ** * ******* ****** ** **** ************ *** z2∈∁ we **** *** z1 )*( 1/ ** )=(1/ ** ****** **** z1=1/z1*z1 *** ********** ***** ** *** ** ** )=(1/ ** ******** z2 *z2)=(1/ z1 )*(1/ z2 ***** z1 ******** is because *** inverse ** * complex ****** ** defined ** *** ***** * ** *** complex number ** ** we have *** ******* ******* z1 and z2 ***** ******* would ** **** *** 1/z2 ************ ********* ****************************** 6Express **** of the ********* ******* ******* ** the ***** ************** z=|z|(cosθ+isinθ):a) ***** *** ************************ ** ******************************* ************************* ****************************************** **************************** *** ******* ******* **** * ***** representation ************************** **** * ** *** ** ** ********* ******* ******* ***** that|z| * * ** ***** = |z ** * *********** * *************** *** ************ ***** equality ** ********************* = zz ***** ****** equality ******* **** the **** **** |z| = |z *** as *** ******* ** * ******* ****** ** the ******** **** *** ****** ** *** complex ******** ***** ******** follows **** *** **** that ****** * ******** as *** ******* of * ******* number is the ******** **** the ****** in *** ******* ******** ****** ******** ******* from the fact that ******* ≤ ********* as *** ******* ** * complex ****** ** *** distance **** the ****** ** *** ******* planeProblem **** ******** and ******** ** ********* ******* ******* Prove that + ************* **** * ** ̅1z2|≤2|z1z2||z1z ̅2| * ** ****** * ******** * ** *********** |z1||z2| + |z2||z1|= *********** **** + ** ̅1z2| * ******** * ******** * ********** cannot **** *** ********* * ******* because ******** ** *** necessarily ***** ** ****** *** ******* ** ** * 1+i *** z2 * *** **** ******** * * *** ****** * ********* ****** *** ******** ********** to ***** ******* ****************** ******** ****** ****** *** have ************ |≤|z_1 ****** ****** * ******************** |≤|z_1 ********** ******** ****** |+|z_3 |this is ********** triangle ********** ****** that *** ******** ***** ** *** *** of *** ******* ******* ** less **** ** ***** to *** sum ** *** absolute values ** *** two ******* ******* In **** **** ** *** adding three ******* ******* ******** so *** ******** value ** the *** is **** **** or ***** ** the sum ** the ******** ****** ** *** ***** ******* ********** *** *** ***** ******* complex ******* we ************ the triangle inequality ** have |z_1+z_2+z_3| ***** ******************* the triangle inequality ***** ** have |z_1+z_2+z_3| <= |z_1|+|z_2|+|z_3| b)By the triangle ********** ** ***************** **** ***** ******************* ****** the triangle ********** again ** ***************** **** ***** ************************* ************** **** process we ********** ****** *************** **** ***** ************ ******** proof ** now *************** ***** * * *** ∁ ** two ******* ******* ***** thata) ************************ *** ***************************** *** triangle ************************************************************************************************************************** *** z a ∈ *** ** *** complex ******* ***** ****** |1/(z+a)|≤1/(||z|+|a|| ) if ************ * a ∈ ∁ ** *** ******* ******* Proof ***************************** if ********************************* ** ********** *** ********************* ** ****************************** ** |z|≠|a|We **** **** |z+a|≥|z|-|a| If ********* **** we *****************************************************