Answered You can buy a ready-made answer or pick a professional tutor to order an original one.
There are 8 high jumpers on a track team. a) If High Jumpers make up 2/9 of the team, how many members are there on the team? b) If the number of runners included in the team makes a fraction o
There are 8 high jumpers on a track team.
a) If High Jumpers make up 2/9 of the team, how many members are there on the team?
b) If the number of runners included in the team makes a fraction of \(\large \frac{3}{9}\), how many are there on the team?
c) How many are there on the team allocated for other activities.
d) Express that amount in fraction form.
e) Proove the amounts you found are correct.
- @
- 15 orders completed
- ANSWER
-
Tutor has posted answer for $10.00. See answer's preview
**** ** a ****** **** question ***** *** you **** is **** knowledge ofmultiplication ** ************ ********* ** ** take the ****** ** high ******* on *** team ** *********** **** then **** is **** ** *** question *** ** ************** expressed ** ************** \begin{aligned} \large ******* \large ******* *********** ******************* ** calculate * ** **** ** perform cross ************** Our ********* **** ** ********* * ** *** ** ********* **** ** **** as ******** ** *** ********** is **** ** *** **** *** **** ****** be **** ** *** ***** **** ** **** ** ******** *** equality ** the ******** **** ** **** ******** in *** ***** steps\(\qquad\qquad \begin{aligned} \large 8\times ******* ****** x\times\frac{2}{9}\times9\\ ****** ******* ******* ****** x\times2\\ ****** 8 ****** ******* ***************** \large x\times ******* \frac{1}{2}\\ ****** ******* 9\times ***************** ****** x\cdots\cdots\cdots(1)\\ \large * ****** ****** \frac{8\times *********** \cdots *** ** ************ ************** ****** ******** *************** ** ** *** finding * ***** for\(\large * ** *** ******* ***** ** ****** ** ******* as ***** in *** ** * *** * ** subjectedThere *** ** members ** *** **** & 8 ** **** *** **** *********** **** *** part ****** is that\(\large\frac{3}{9}\\text{of}\\small36\)is *** ****** ** ************ teamNow the ************ ********** of the question ** ******** as ***** ** ******* ******* ** **** to know that **** ******* *** ******** ************ ** the ************ ******** ** * ************ proceeding ******* ** *** ************** *************** ****** \text{Number ** players}&= \small ********************* ****** ****** \frac{36\times3}{9}\\ ****** \small *************** &= ****** 12 *************** ** ************** *************** ****** ************ of ******** ****** ****** 36 ****** ************* &= ****** ********************************* ****** \small 4\times3\\ &= ******** ******************* *********** the ******** ** *** ****** fully **** *** *** ********* ***** ***** ****** it by *** ************ 9 (shown to ***** ******** **** *** *********** ***** *********** *** ****** ** the ********** * **** ************** *** **** ****** *** **** ** ** simplify *** ******** ** * *********** ****** Therefore the ****** ******** is *** **** ** it ********** *** equation at * **** faster rate: ** ** **** *** generate *** ******* as * result ** multiplications done by ****** *** ** **** *** much ** allocated for ******* ***** high ******* that *** be ********** ********** ********* Therefore *** ****** of ******** ******* is\(\large36-20=16\) d) Now\(\large ************ *********** reserved ***** ** is mathematically written as\(\large *************** *** **** ***** ** ******* ********** ******* one ***** **** memory of *** multiplication ****** ********** in * trouble *** ** ***** **** ********* ***** denominator ** ***** ************ ********** *** ******* ***** retaining *** rest ************** *************** ****** ************************* \frac{2\times2\times2\times2}{2\times2\times3\times3}\\ ****** ********************************* ****** \small *********** ******************* There were 3 categories ******** on *** team & ** **** ***** *** relative ********* of **** **** ******* ** *** ***** ****** ** members ********* it ** * norm that the ******** of each ******** equals ***** ********* \(\qquad\qquad *************** ****** ********************* \small \frac{2}{9}+\frac{3}{9}+\frac{4}{9}\\ &= \small ***************** ****** ****** ************* ****** ****** 1 *************** *** ******** ***************** ************* ****