Waiting for answer This question has not been answered yet. You can hire a professional tutor to get the answer.
Why is the melting point of Argon so much lower than any of the Period 3 elements?
The melting point of argon is much lower than those of period 3 because, being a noble gas, it exists as atoms, rather than molecules, which directly impacts the strength of its .
Melting point temperatures are determined by the strength of the and by the characteristics of the structure of the elements.
Melting point temperatures increase starting with the first three elements in the period - these elements form , they peak at silicon, which forms a giant covalent lattice, i.e. a network of , then drop significantly when you get to the .
These do not form structures, but rather exist as independent molecules (or atoms, in argon's case).
These molecules only exhibit weak , or London dispersion forces (LDF), which means that much less energy is needed to melt or boil them.
The size of the molecule plays an important role in determining the strength of the LDFs - the bigger the molecule, the stronger these forces will be.
Since argon exists as single atoms, the LDFs will be extremely weak, hence the very low melting and boiling points it has.
So, argon only exists as individual atoms ##->## in exhibits very weak ##->## it has a very low melting point.