Answered You can hire a professional tutor to get the answer.

QUESTION

) The smallest number of regression models you need to have nested modeling is:) 1 b.) 2 c.) 3 d.) 4 2.

religious). Then, we hypothesize that, because women outlive men, and because women are typically more religious than men are, part of this age effect is actually due to sex. We run a second model in which we add a variable for sex:

Independent Variable                                      Model 1                       Model 2

Age (in years)                                                 0.03***                       0.03***

Sex (, )                                              ---                                -0.93***

Constant                                                          4.23                             4.65

R-Squared                                                       0.04                            0.07

n                                                                      2912                            2912

Which of the following is the most appropriate interpretation of what is going on here?

a.) Sex clearly has a larger effect than age, so our hypothesis is supported.

b.) The value of R-Squared rises, so our hypothesis is supported.

c.) The effect of age does not change, so our hypothesis is not supported.

d.) The constant increases, so our hypothesis is not supported.

5.) We hypothetically observe that the higher one’s education, the happier one is. We hypothesize that this is actually because of income: people with higher education tend to make higher incomes, and it is these higher incomes, not education, that causes the higher happiness. Here are hypothetical models (using a dependent variable where at all happy, up to happy):

Independent Variable                                      Model 1                       Model 2

Education (in years)                                        0.35***                       ???

Income (in thousands of dollars)                     ---                                0.03***

Constant                                                          0.50                             -2.50

R-Squared                                                       0.10                            0.15

n                                                                      1000                            1000

To support the hypothesis, what is the most likely number that would go in the place of the “???” in Model 2?

a.) .03

b.) .20**

c.) .35*

d.) .50***

6.) In Model 1, Independent Variable A has a statistically significant effect. In Model 2, we add Independent Variable B, which has a statistically significant effect, and the effect of Independent Variable A moves closer to zero and loses its statistical significance. What might we have here?

a.) an intervening relationship

b.) a dependent relationship

c.) an independent relationship

d.) a controlling relationship

7.)

a.) We are interested in explaining the number of hours per week that the CRMJ 321 students spend playing videogames during the school year (rvidsch). Perhaps, we think, this variable can be explained by some students’ political views! We use our political variables to predict videogame playing and end up with the following regression (Model 1):

. regress rvidsch abort deathpen

      Source |       SS       df       MS              Number of obs =     109

-------------+------------------------------           F(  2,   106) =    2.13

       Model |  250.659437     2  125.329719           Prob > F      =  0.1236

    Residual |  6230.07909   106  58.7743311           R-squared     =  0.0387

-------------+------------------------------           Adj R-squared =  0.0205

       Total |  6480.73853   108  60.0068383           Root MSE      =  7.6664

------------------------------------------------------------------------------

     rvidsch |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

       abort |  -.8708947   .4901819    -1.78   0.078    -1.842728    .1009386

    deathpen |    .484386   .4736684     1.02   0.309    -.4547077     1.42348

       _cons |   4.801033   1.543066     3.11   0.002     1.741755    7.860312

------------------------------------------------------------------------------

What can we conclude from our results? Interpret the coefficients and discuss how much of the variance of videogame playing is accounted for by political factors.

b.) Undeterred, we press on, suggesting that perhaps political views are not the only answer. Below is a Model 2, multiple regression explaining school year videogame playing.

. regress rvidsch age height urban rvidsum rtvsch abort deathpen

      Source |       SS       df       MS              Number of obs =     107

-------------+------------------------------           F(  7,    99) =   25.19

       Model |    4116.453     7  588.064715           Prob > F      =  0.0000

    Residual |  2311.36943    99  23.3471659           R-squared     =  0.6404

-------------+------------------------------           Adj R-squared =  0.6150

       Total |  6427.82243   106  60.6398342           Root MSE      =  4.8319

------------------------------------------------------------------------------

     rvidsch |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

         age |  -.5397808   .1949932    -2.77   0.007    -.9266896   -.1528719

      height |   .3511119   .1171413     3.00   0.003     .1186781    .5835456

       urban |   -.975658   1.214456    -0.80   0.424    -3.385401    1.434085

     rvidsum |   .4494623   .0414731    10.84   0.000     .3671706     .531754

      rtvsch |   .1787645   .0532984     3.35   0.001      .073009      .28452

       abort |  -.7029951   .3151186    -2.23   0.028    -1.328259   -.0777314

    deathpen |    .172909   .3069888     0.56   0.575    -.4362233    .7820413

       _cons |  -11.53183   9.254303    -1.25   0.216    -29.89437    6.830718

------------------------------------------------------------------------------

Discuss this model as compared to the last model. First, does it do a better job explaining videogame playing? How do we know? Write out the equation.

c.) Interpret the results of each variable on hours of video games played per week for Model 2. Be specific. Do the results surprise you? To aid in your discussion, below is a table depicting all of the variables used in the analysis:

    Variable |   Mean         Std. Dev.    Min        Max

-------------+--------------------------------------------------------

     rvidsch |    5.191589    7.787158     0          35

         age |   21.7037      3.054824     18         43

      height |   68.89815     4.224295     56         80

       urban |    0.212963    0.4113103    0          1

     rvidsum |    6.925926   11.8416       0          60

-------------+--------------------------------------------------------

      rtvsch |    9.634259   11.1978       0          100

       abort |    1.138889    1.506735     0 (choice) 4 (life)

    deathpen |    2.62037     1.545071     0 (con)    4 (pro)

d.)

In this final model (Model 3), we remove height from the equation.

. regress rvidsch age urban rvidsum rtvsch abort deathpen

      Source |       SS       df       MS              Number of obs =     107

-------------+------------------------------           F(  6,   100) =   25.83

       Model |  3906.70149     6  651.116916           Prob > F      =  0.0000

    Residual |  2521.12094   100  25.2112094           R-squared     =  0.6078

-------------+------------------------------           Adj R-squared =  0.5842

       Total |  6427.82243   106  60.6398342           Root MSE      =  5.0211

------------------------------------------------------------------------------

     rvidsch |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

         age |  -.5933422   .2017752    -2.94   0.004    -.9936586   -.1930259

       urban |   -.524767   1.252287    -0.42   0.676    -3.009269    1.959735

     rvidsum |   .4774664   .0419891    11.37   0.000     .3941612    .5607716

      rtvsch |    .167237   .0552408     3.03   0.003     .0576408    .2768332

       abort |  -.6352208   .3266126    -1.94   0.055    -1.283211    .0127692

    deathpen |   .2753666   .3170247     0.87   0.387    -.3536013    .9043346

       _cons |   13.30374   4.282819     3.11   0.002     4.806744    21.80073

------------------------------------------------------------------------------

Discuss what happened to views on abortion and its relationship to videogame playing between Models 1, 2, and 3. Why do you think this occurred? Use your knowledge of control variables to advance an explanation.

Note: Question 7 is designed to test your ability to explain these concepts clearly. Spend some time explaining and discussing. A few words likely will not do.

Show more
LEARN MORE EFFECTIVELY AND GET BETTER GRADES!
Ask a Question