Waiting for answer This question has not been answered yet. You can hire a professional tutor to get the answer.

QUESTION

18 Ity SO for I VEN is a ( mathematical ) predicate with the domain N JUSTIFY 3 19 . For predicate formulas A ( x ) .

9. The formula ∃x((C(x) ∩ F(x)) ⇒ Y (x)) represents sentence: Some blue flowers are yellow in a domain X 6= ∅

JUSTIFY: y n

10. For any predicates A(x), B(x), the formula ((∀xA(x) ∪ ∀xB(x)) ⇒ ∀x(A(x) ∪ B(x))) is a predicate tautology

JUSTIFY: y n

11. ∃xA(x) ⇒ ∀xA(x) is a predicate tautology.

JUSTIFY: y n

12. For predicate formulas A(x), B(x), ¬∀x(A(x) ∩ B(x)) ≡ (¬∀xA(x) ∪ ∃x¬B(x))

JUSTIFY: y n

13. ∀x(A(x) ⇒ A(x)) is a predicate tautology

JUSTIFY: y n

14. For predicate formulas A(x), B(x), ∃x(A(x) ∪ B(x)) ≡ (∃xA(x) ∪ ∃xB(x))

JUSTIFY: y n

15. ∀x ∈ R(x 2 < 0) ⇒ ∃x ∈ R(x 2 < 0) is a true mathematical statement

JUSTIFY: y n

16. ∀x2<0(x + 1 = 4) ⇒ ∃x2<0(x + 1 = 4) is a true mathematical statement in the set R of real numbers

JUSTIFY: y n

17. ¬∀n∃x(x < 1+n n+1 ) ≡ ∃n∀x(x ≥ 1+n n−1 ))

JUSTIFY: y n

and also the following in the picture

  • Attachment 1
  • Attachment 2
  • Attachment 3
18 Ity SO for I VEN is a ( mathematical ) predicate with the domain NJUSTIFY319 . For predicate formulas A ( x ) . B ( x )( IP ( A ( I ) UB ( 2 0 ) ) = ( 324 ( 2 ) LAB ( 2 )JUSTIFY320 VIER ( 2 2 0 ) - JERI1 )is a true mathematical statementJUSTIFY3
Show more
LEARN MORE EFFECTIVELY AND GET BETTER GRADES!
Ask a Question