Answered You can buy a ready-made answer or pick a professional tutor to order an original one.

QUESTION

Due at midnight will pay $40 for 10 questions

Find dx/dy of 2x^3+2xy+y^2=9

Find dx/dy of 2x^3+xy^2+lnx=19

Find limit x->infinity (2x^3-3x+6)/(5x^3-4x^2+6)

Critical values for f(x)= x^3-x+2

Find limit x->infinity (42x^2-x+4)/(5x^3-3x^2+8x+6)

Show more
Files: image.png
ANSWER

Tutor has posted answer for $40.00. See answer's preview

$40.00

******** 1) Question

2)

********

3)

******** ***

***

**

a

critical *****

**

the

********

**** if

****

****** *** ** ** doesn’t ****** exists *** *** ******** ****** ** f(x) ******** *** ******** ***

*****

=0

There

***

***

******** ****** x=1 ** x=-1 *****

****

is ***

****

**

3]

** ********

f

**** **

***

*** at *** endpoints *** and x=3 We

*****

****** ******* ******** *** ******* ***** ** ** and the smallest value ** ** ********* the ******** ******* ** **** ** **

3]

** ** *********

**

*** and *** absolute minimum ** **** ** [0 3] ** ** ********* ** **** ******** *** Question *** *** ***** ** ****** ** rectangle *** we **** need ** ***** a *** ***** ***** *** ***** * *****

**

*** **********

*

**

***

******

*

**

***

***** **

***

********** A=Maximize Area=length*width=x*y *** ********* of the ***** ** *** feet ***** ******** and *********** ***** * ******** of one ********* ********** is

****

****** ** **** *** <x=400<800 ** the critical number * *

**

square *****

at

the ******** number * = *** ** 400*400-4002/2= 80 *** square ***** at

***

critical

*

= *** * = so

***

******* **** is 80

***

ft2 ******** *** *

**

******** ** the bottom ** *** ladder * **

position

** *** *** ** *** ******* ** **** *** x=0 ***** * **

*****

of *** ****** ** the ladder v=1 **** t

**

time ********* Use *** *************** ******** ** ***

**

**** ****

*****

***** *** ***** ** the *** ** the ******

is

** ****

Click here to download attached files: study.docx
or Buy custom answer
LEARN MORE EFFECTIVELY AND GET BETTER GRADES!
Ask a Question