Answered You can buy a ready-made answer or pick a professional tutor to order an original one.
File: ch Discrete Distributions 1. Variables which take on values only at certain points over
File: ch05, Chapter 5: Discrete Distributions
True/False
1. Variables which take on values only at certain points over a given interval are called continuous random variables
Ans:
Response: See section 5.1 Discrete versus Continuous Distributions
Difficulty: Easy
Learning Objective: 5.1: Define a random variable in order to differentiate between a discrete distribution and a continuous distribution.
2. A variable that can take on values at any point over a given interval is called a discrete random variable
Ans:
Response: See section 5.1 Discrete versus Continuous Distributions
Difficulty: Easy
Learning Objective: 5.1: Define a random variable in order to differentiate between a discrete distribution and a continuous distribution.
3. The number of visitors to a website each day is an example of a discrete random variable
Ans:
Response: See section 5.1 Discrete versus Continuous Distributions
Difficulty: Easy
Learning Objective: 5.1: Define a random variable in order to differentiate between a discrete distribution and a continuous distribution.
4. The amount of time a patient waits in a doctor's office is an example of a continuous random variable
Ans:
Response: See section 5.1 Discrete versus Continuous Distributions
Difficulty: Easy
Learning Objective: 5.1: Define a random variable in order to differentiate between a discrete distribution and a continuous distribution.
5. The mean or the expected value of a discrete distribution is the long-run average of the occurrences.
Ans:
Response: See section 5.2 Describing a Discrete Distribution
Difficulty: Easy
Learning Objective: 5.2: Determine the mean, variance, and standard deviation of a discrete distribution.
6. To compute the variance of a discrete distribution, it is not necessary to know the mean of the distribution.
Ans:
Response: See section 5.2 Describing a Discrete Distribution
Difficulty: Medium
Learning Objective: 5.2: Determine the mean, variance, and standard deviation of a discrete distribution.
7. The variance of a discrete distribution increases if we add a positive constant to each one of its value.
Ans:
Response: See section 5.2 Describing a Discrete Distribution
Difficulty: Medium
Learning Objective: 5.2: Determine the mean, variance, and standard deviation of a discrete distribution.
8. In a binomial experiment, any single trial contains only two possible outcomes and successive trials are independent.
Ans:
Response: See section 5.3 Binomial Distribution
Difficulty: Medium
Learning Objective: 5.3: Solve problems involving the binomial distribution using the binomial formula and the binomial table.
9. In a binomial distribution, p, the probability of getting a successful outcome on any single trial, increases proportionately with every success.
Ans:
Response: See section 5.3 Binomial Distribution
Difficulty: Medium
Learning Objective: 5.3: Solve problems involving the binomial distribution using the binomial formula and the binomial table.
10. The assumption of independent trials in a binomial distribution is not a great concern if the sample size is smaller than 1/20th of the population size.
Ans:
Response: See section 5.3 Binomial Distribution
Difficulty: Medium
Learning Objective: 5.3: Solve problems involving the binomial distribution using the binomial formula and the binomial table.
11. For a binomial distribution in which the probability of success is p = 0.5, the variance is twice the mean.
Ans:
Response: See section 5.3 Binomial Distribution
Difficulty: Hard
Learning Objective: 5.3: Solve problems involving the binomial distribution using the binomial formula and the binomial table.
12. The Poisson distribution is a continuous distribution which is very useful in solving waiting time problems
Ans:
Response: See section 5.4 Poisson Distribution
Difficulty: Easy
Learning Objective: 5.4: Solve problems involving the Poisson distribution using the Poisson formula and the Poisson table.
13. Both the Poisson and the binomial distributions are discrete distributions and both have a given number of trials.
Ans:
Response: See section 5.4 Poisson Distribution
Difficulty: Medium
Learning Objective: 5.4: Solve problems involving the Poisson distribution using the Poisson formula and the Poisson table.
14. The Poisson distribution is best suited to describe occurrences of rare events in a situation where each occurrence is independent of the other occurrences.
Ans:
Response: See section 5.4 Poisson Distribution
Difficulty: Easy
Learning Objective: 5.4: Solve problems involving the Poisson distribution using the Poisson formula and the Poisson table.
15. For the Poisson distribution the mean represents twice the value of the standard deviation..
Ans:
Response: See section 5.4 Poisson Distribution
Difficulty: Easy
Learning Objective: 5.4: Solve problems involving the Poisson distribution using the Poisson formula and the Poisson table.
16. A binomial distribution is better than a Poisson distribution to describe the occurrence of major oil spills in the Gulf of Mexico.
Ans:
Response: See section 5.4 Poisson Distribution
Difficulty: Medium
Learning Objective: 5.4: Solve problems involving the Poisson distribution using the Poisson formula and the Poisson table.
17. For the Poisson distribution the mean and the variance are the same.
Ans:
Response: See section 5.4 Poisson Distribution
Difficulty: Easy
Learning Objective: 5.4: Solve problems involving the Poisson distribution using the Poisson formula and the Poisson table.
18. Poisson distribution describes the occurrence of discrete events that may occur over a continuous interval of time or space.
Ans:
Response: See section 5.4 Poisson Distribution
Difficulty: Hard
Learning Objective: 5.4: Solve problems involving the Poisson distribution using the Poisson formula and the Poisson table.
19. A Poisson distribution is characterized by one parameter.
Ans:
Response: See section 5.4 Poisson Distribution
Difficulty: Medium
Learning Objective: 5.4: Solve problems involving the Poisson distribution using the Poisson formula and the Poisson table.
20. A hypergeometric distribution applies to experiments in which the trials represent sampling with replacement.
Ans:
Response: See section 5.5 Hypergeometric Distribution
Difficulty: Easy
Learning Objective: 5.5: Solve problems involving the hypergeometric distribution using the hypergeometric formula.
21. As in a binomial distribution, each trial of a hypergeometric distribution results in one of two mutually exclusive outcomes, i.e., either a success or a failure.
Ans:
Response: See section 5.5 Hypergeometric Distribution
Difficulty: Medium
Learning Objective: 5.5: Solve problems involving the hypergeometric distribution using the hypergeometric formula.
22. The number of successes in a hypergeometric distribution is unknown
Ans:
Response: See section 5.5 Hypergeometric Distribution
Difficulty: Hard
Learning Objective: 5.5: Solve problems involving the hypergeometric distribution using the hypergeometric formula.
23. In a hypergeometric distribution the population, N, is finite and known.
Ans:
Response: See section 5.5 Hypergeometric Distribution
Difficulty: Hard
Learning Objective: 5.5: Solve problems involving the hypergeometric distribution using the hypergeometric formula.
Multiple Choice
24. The volume of liquid in an unopened 1-gallon can of paint is an example of _________.
a) the binomial distribution
b) both discrete and continuous variable
c) a continuous random variable
d) a discrete random variable
e) a constant
Ans:
Response: See section 5.1 Discrete versus Continuous Distributions
Difficulty: Medium
Learning Objective: 5.1: Define a random variable in order to differentiate between a discrete distribution and a continuous distribution.
25. The number of finance majors within the School of Business is an example of _______.
a) a discrete random variable
b) a continuous random variable
c) the Poisson distribution
d) the normal distribution
e) a constant
Ans:
Response: See section 5.1 Discrete versus Continuous Distributions
Difficulty: Easy
Learning Objective: 5.1: Define a random variable in order to differentiate between a discrete distribution and a continuous distribution.
26. The speed at which a jet plane can fly is an example of _________.
a) neither discrete nor continuous random variable
b) both discrete and continuous random variable
c) a continuous random variable
d) a discrete random variable
e) a constant
Ans:
Response: See section 5.1 Discrete versus Continuous Distributions
Difficulty: Medium
Learning Objective: 5.1: Define a random variable in order to differentiate between a discrete distribution and a continuous distribution.
27. In American Roulette, there are two zeroes and 36 non-zero numbers (18 red and 18 black). If a player bets 1 unit on red, his chance of winning 1 unit is therefore 18/38 and his chance of losing 1 unit (or winning -1) is 20/38. Let x be the player profit per game. The mean (average) value of x is approximately_______________.
a) 0.0526
b) -0.0526
c) 1
d) -1
e) 0
Ans:
Response: See section 5.2 Describing a Discrete Distribution
Difficulty: Easy
Learning Objective: 5.2: Determine the mean, variance, and standard deviation of a discrete distribution.
28. A recent analysis of the number of rainy days per month found the following outcomes and probabilities.
Number of Raining Days (x)
P(x)
3
.40
4
.20
5
.40
The mean of this distribution is _____________.
a) 2
b) 3
c) 4
d) 5
e) <1
Ans:
Response: See section 5.2 Describing a Discrete Distribution
Difficulty: Easy
Learning Objective: 5.2: Determine the mean, variance, and standard deviation of a discrete distribution.
29.
A recent analysis of the number of rainy days per month found the following outcomes and probabilities.
Number of Raining Days (x)
P(x)
3
.40
4
.20
5
.40
The standard deviation of this distribution is _____________.
a) .800
b) .894
c) .400
d) 4.00
e) .457
Ans:
Response: See section 5.2 Describing a Discrete Distribution
Difficulty: Easy
Learning Objective: 5.2: Determine the mean, variance, and standard deviation of a discrete distribution.
30. You are offered an investment opportunity. Its outcomes and probabilities are presented in the following table.
x
P(x)
-$1,000
.40
$0
.20
+$1,000
.40
Which of the following statements is true?
a) This distribution is skewed to the right.
b) This is a binomial distribution.
c) This distribution is symmetric.
d) This distribution is skewed to the left.
e) This is a Poisson distribution
Ans:
Response: See section 5.2 Describing a Discrete Distribution
Difficulty: Easy
Learning Objective: 5.2: Determine the mean, variance, and standard deviation of a discrete distribution.
31. A market research team compiled the following discrete probability distribution on the number of sodas the average adult drinks each day. In this distribution, x represents the number of sodas which an adult drinks.
x
P(x)
0
0.30
1
0.10
2
0.50
3
0.10
The mean (average) value of x is _______________.
a) 1.4
b) 1.75
c) 2.10
d) 2.55
e) 3.02
Ans:
Response: See section 5.2 Describing a Discrete Distribution
Difficulty: Easy
Learning Objective: 5.2: Determine the mean, variance, and standard deviation of a discrete distribution.
32.
A market research team compiled the following discrete probability distribution on the number of sodas the average adult drinks each day. In this distribution, x represents the number of sodas which an adult drinks.
x
P(x)
0
0.30
1
0.10
2
0.50
3
0.10
The standard deviation of x is _______________.
a) 1.04
b) 0.89
c) 1.40
d) .506
e) .588
Ans:
Response: See section 5.2 Describing a Discrete Distribution
Difficulty: Easy
Learning Objective: 5.2: Determine the mean, variance, and standard deviation of a discrete distribution.
33. A market research team compiled the following discrete probability distribution. In this distribution, x represents the number of automobiles owned by a family.
x
P(x)
0
0.10
1
0.10
2
0.50
3
0.30
Which of the following statements is true?
a) This distribution is skewed to the right.
b) This is a binomial distribution.
c) This is a normal distribution.
d) This distribution is skewed to the left.
e) This distribution is bimodal.
Ans:
Response: See section 5.2 Describing a Discrete Distribution
Difficulty: Easy
Learning Objective: 5.2: Determine the mean, variance, and standard deviation of a discrete distribution.
34. A market research team compiled the following discrete probability distribution for families residing in Randolph County. In this distribution, x represents the number of evenings the family dines outside their home during a week.
x
P(x)
0
0.30
1
0.50
2
0.10
3
0.10
The mean (average) value of x is _______________.
a) 1.0
b) 1.5
c) 2.0
d) 2.5
e) 3.0
Ans:
Response: See section 5.2 Describing a Discrete Distribution
Difficulty: Easy
Learning Objective: 5.2: Determine the mean, variance, and standard deviation of a discrete distribution.
35. A market research team compiled the following discrete probability distribution for families residing in Randolph County. In this distribution, x represents the number of evenings the family dines outside their home during a week.
x
P(x)
0
0.30
1
0.50
2
0.10
3
0.10
The standard deviation of x is _______________.
a) 1.00
b) 2.00
c) 0.80
d) 0.89
e) 1.09
Ans:
Response: See section 5.2 Describing a Discrete Distribution
Difficulty: Easy
Learning Objective: 5.2: Determine the mean, variance, and standard deviation of a discrete distribution.
36. If x has a binomial distribution with p = .5, then the distribution of x is ________.
a) skewed to the right
b) skewed to the left
c) symmetric
d) a Poisson distribution
e) a hypergeometric distribution
Ans:
Response: See section 5.3 Binomial Distribution
Difficulty: Easy
Learning Objective: 5.3: Solve problems involving the binomial distribution using the binomial formula and the binomial table.
37. The following graph is a binomial distribution with n = 6.
This graph reveals that ____________.
a) p > 0.5
b) p = 1.0
c) p = 0
d) p < 0.5
e) p = 1.5
Ans:
Response: See section 5.3 Binomial Distribution
Difficulty: Medium
Learning Objective: 5.3: Solve problems involving the binomial distribution using the binomial formula and the binomial table.
38. The following graph is a binomial distribution with n = 6.
This graph reveals that ____________.
a) p > 0.5
b) p = 1.0
c) p = 0
d) p < 0.5
e) p = 1.5
Ans:
Response: See section 5.3 Binomial Distribution
Difficulty: Medium
Learning Objective: 5.3: Solve problems involving the binomial distribution using the binomial formula and the binomial table.
39. The following graph is a binomial distribution with n = 6.
This graph reveals that ____________.
a) p = 0.5
b) p = 1.0
c) p = 0
d) p < 0.5
e) p = 1.5
Ans:
Response: See section 5.3 Binomial Distribution
Difficulty: Medium
Learning Objective: 5.3: Solve problems involving the binomial distribution using the binomial formula and the binomial table.
40. If x is a binomial random variable with n=10 and p=0.8, the mean value of x is _____.
a) 6
b) 4.8
c) 3.2
d) 8
e) 48
Ans:
Response: See section 5.3 Binomial Distribution
Difficulty: Medium
Learning Objective: 5.3: Solve problems involving the binomial distribution using the binomial formula and the binomial table.
41. If x is a binomial random variable with n=10 and p=0.8, the standard deviation of x is _________.
a) 8.0
b) 1.26
c) 1.60
d) 64.0
e) 10
Ans:
Response: See section 5.3 Binomial Distribution
Difficulty: Medium
Learning Objective: 5.3: Solve problems involving the binomial distribution using the binomial formula and the binomial table.
42. If x is a binomial random variable with n=10 and p=0.8, what is the probability that x is equal to 4?
a) .0055
b) .0063
c) .124
d) .232
e) .994
Ans:
Response: See section 5.3 Binomial Distribution
Difficulty: Medium
Learning Objective: 5.3: Solve problems involving the binomial distribution using the binomial formula and the binomial table.
43. Twenty five individuals are randomly selected out of 100 shoppers leaving a local bedding store. Each shopper was asked if they made a purchase during their visit. Each of the shoppers has the same probability of answering ‘yes’ to having made a purchase. The probability that exactly four of the twenty-five shoppers made a purchase could best be found by _______.
a) using the normal distribution
b) using the binomial distribution
c) using the Poisson distribution
d) using the exponential distribution
e) using the uniform distribution
Ans:
Response: See section 5.3 Binomial Distribution
Difficulty: Medium
Learning Objective: 5.3: Solve problems involving the binomial distribution using the binomial formula and the binomial table.
44. During a recent sporting event, a quarter is tossed to determine which team picks the starting side. Suppose the referee says the coin will be tossed 3 times and the best two out of three wins If team A calls ‘heads’, what is the probability that exactly two heads are observed in three tosses?
a) .313
b) .375
c) .625
d) .875
e) .500
Ans:
Response: See section 5.3 Binomial Distribution
Difficulty: Medium
Learning Objective: 5.3: Solve problems involving the binomial distribution using the binomial formula and the binomial table.
45. A student randomly guesses the answers to a five question true/false test. If there is a 50% chance of guessing correctly on each question, what is the probability that the student misses exactly 1 question?
a) 0.200
b) 0.031
c) 0.156
d) 0.073
e) 0.001
Ans:
Response: See section 5.3 Binomial Distribution
Difficulty: Medium
Learning Objective: 5.3: Solve problems involving the binomial distribution using the binomial formula and the binomial table.
46. A student randomly guesses the answers to a five question true/false test. If there is a 50% chance of guessing correctly on each question, what is the probability that the student misses no questions?
a) 0.000
b) 0.200
c) 0.500
d) 0.031
e) 1.000
Ans:
Response: See section 5.3 Binomial Distribution
Difficulty: Medium
Learning Objective: 5.3: Solve problems involving the binomial distribution using the binomial formula and the binomial table.
47. Pinky Bauer, Chief Financial Officer of Harrison Haulers, Inc., suspects irregularities in the payroll system, and orders an inspection of a random sample of vouchers issued since January 1, 2006. A sample of ten vouchers is randomly selected, without replacement, from the population of 2,000 vouchers. Each voucher in the sample is examined for errors and the number of vouchers in the sample with errors is denoted by x. If 20% of the population of vouchers contain errors, P(x = 0) is _______________.
a) 0.8171
b) 0.1074
c) 0.8926
d) 0.3020
e) 0.2000
Ans:
Response: See section 5.3 Binomial Distribution
Difficulty: Medium
Learning Objective: 5.3: Solve problems involving the binomial distribution using the binomial formula and the binomial table.
48. Pinky Bauer, Chief Financial Officer of Harrison Haulers, Inc., suspects irregularities in the payroll system, and orders an inspection of a random sample of vouchers issued since January 1, 2006. A sample of ten vouchers is randomly selected, without replacement, from the population of 2,000 vouchers. Each voucher in the sample is examined for errors and the number of vouchers in the sample with errors is denoted by x. If 20% of the population of vouchers contain errors, P(x>0) is _______________.
a) 0.8171
b) 0.1074
c) 0.8926
d) 0.3020
e) 1.0000
Ans:
Response: See section 5.3 Binomial Distribution
Difficulty: Medium
Learning Objective: 5.3: Solve problems involving the binomial distribution using the binomial formula and the binomial table.
49. Pinky Bauer, Chief Financial Officer of Harrison Haulers, Inc., suspects irregularities in the payroll system, and orders an inspection of a random sample of vouchers issued since January 1, 2006. A sample of ten vouchers is randomly selected, without replacement, from the population of 2,000 vouchers. Each voucher in the sample is examined for errors and the number of vouchers in the sample with errors is denoted by x. If 20% of the population of vouchers contains errors, the mean value of x is __________.
a) 400
b) 2
c) 200
d) 5
e) 1
Ans:
Response: See section 5.3 Binomial Distribution
Difficulty: Medium
Learning Objective: 5.3: Solve problems involving the binomial distribution using the binomial formula and the binomial table.
50. Pinky Bauer, Chief Financial Officer of Harrison Haulers, Inc., suspects irregularities in the payroll system, and orders an inspection of a random sample of vouchers issued since January 1, 2006. A sample of ten vouchers is randomly selected, without replacement, from the population of 2,000 vouchers. Each voucher in the sample is examined for errors and the number of vouchers in the sample with errors is denoted by x. If 20% of the population of vouchers contains errors, the standard deviation of x is ______.
a) 1.26
b) 1.60
c) 14.14
d) 3.16
e) 0.00
Ans:
Response: See section 5.3 Binomial Distribution
Difficulty: Medium
Learning Objective: 5.3: Solve problems involving the binomial distribution using the binomial formula and the binomial table.
51. Dorothy Little purchased a mailing list of 2,000 names and addresses for her mail order business, but after scanning the list she doubts the authenticity of the list. She randomly selects five names from the list for validation. If 40% of the names on the list are non-authentic, and x is the number of non-authentic names in her sample, P(x=0) is ______________.
a) 0.8154
b) 0.0467
c) 0.0778
d) 0.4000
e) 0.5000
Ans:
Response: See section 5.3 Binomial Distribution
Difficulty: Medium
Learning Objective: 5.3: Solve problems involving the binomial distribution using the binomial formula and the binomial table.
52. Dorothy Little purchased a mailing list of 2,000 names and addresses for her mail order business, but after scanning the list she doubts the authenticity of the list. She randomly selects five names from the list for validation. If 40% of the names on the list are non-authentic, and x is the number of non-authentic names in her sample, P(x<2) is ______________.
a) 0.3370
b) 0.9853
c) 0.9785
d) 0.2333
e) 0.5000
Ans:
Response: See section 5.3 Binomial Distribution
Difficulty: Medium
Learning Objective: 5.3: Solve problems involving the binomial distribution using the binomial formula and the binomial table.
53. Dorothy Little purchased a mailing list of 2,000 names and addresses for her mail order business, but after scanning the list she doubts the authenticity of the list. She randomly selects five names from the list for validation. If 40% of the names on the list are non-authentic, and x is the number of non-authentic names in her sample, P(x>0) is ______________.
a) 0.2172
b) 0.9533
c) 0.1846
d) 0.9222
e) 1.0000
Ans:
Response: See section 5.3 Binomial Distribution
Difficulty: Medium
Learning Objective: 5.3: Solve problems involving the binomial distribution using the binomial formula and the binomial table.
54. Dorothy Little purchased a mailing list of 2,000 names and addresses for her mail order business, but after scanning the list she doubts the authenticity of the list. She randomly selects five names from the list for validation. If 40% of the names on the list are non-authentic, and x is the number on non-authentic names in her sample, the expected (average) value of x is ______________.
a) 2.50
b) 2.00
c) 1.50
d) 1.25
e) 1.35
Ans:
Response: See section 5.3 Binomial Distribution
Difficulty: Medium
Learning Objective: 5.3: Solve problems involving the binomial distribution using the binomial formula and the binomial table.
55. A large industrial firm allows a discount on any invoice that is paid within 30 days. Of all invoices, 10% receive the discount. In a company audit, 10 invoices are sampled at random. The probability that fewer than 3 of the 10 sampled invoices receive the discount is approximately_______________.
a) 0.1937
b) 0.057
c) 0.001
d) 0.3486
e) 0.9298
Ans:
Response: See section 5.3 Binomial Distribution
Difficulty: Hard
Learning Objective: 5.3: Solve problems involving the binomial distribution using the binomial formula and the binomial table.
56. A large industrial firm allows a discount on any invoice that is paid within 30 days. Of all invoices, 10% receive the discount. In a company audit, 15 invoices are sampled at random. The mean (average) value of the number of the 15 sampled invoices that receive discount is _______
a) 1
b) 3
c) 1.5
d) 2
e) 10
Ans:
Response: See section 5.3 Binomial Distribution
Difficulty: Medium
Learning Objective: 5.3: Solve problems involving the binomial distribution using the binomial formula and the binomial table.
57. In a certain communications system, there is an average of 1 transmission error per 10 seconds. Assume that the distribution of transmission errors is Poisson. The probability of 1 error in a period of one-half minute is approximately ________
a) 0.1493
b) 0.3333
c) 0.3678
d) 0.1336
e) 0.03
Ans:
Response: See section 5.4 Poisson Distribution
Difficulty: Hard
Learning Objective: 5.4: Solve problems involving the Poisson distribution using the Poisson formula and the Poisson table.
58. It is known that screws produced by a certain company will be defective with probability .01 independently of each other. The company sells the screws in packages of 25 and offers a money-back guarantee that at most 1 of the 25 screws is defective. Using Poisson approximation for binomial distribution, the probability that the company must replace a package is approximately _________
a) 0.01
b) 0.1947
c) 0.7788
d) 0.0264
e) 0.2211
Ans:
Response: See section 5.4 Poisson Distribution
Difficulty: Hard
Learning Objective: 5.4: Solve problems involving the Poisson distribution using the Poisson formula and the Poisson table.
59. The number of cars arriving at a toll booth in five-minute intervals is Poisson distributed with a mean of 3 cars arriving in five-minute time intervals. The probability of 5 cars arriving over a five-minute interval is _______.
a) 0.0940
b) 0.0417
c) 0.1500
d) 0.1008
e) 0.2890
Ans:
Response: See section 5.4 Poisson Distribution
Difficulty: Medium
Learning Objective: 5.4: Solve problems involving the Poisson distribution using the Poisson formula and the Poisson table.
60. The number of cars arriving at a toll booth in five-minute intervals is Poisson distributed with a mean of 3 cars arriving in five-minute time intervals. The probability of 3 cars arriving over a five-minute interval is _______.
a) 0.2700
b) 0.0498
c) 0.2240
d) 0.0001
e) 0.0020
Ans:
Response: See section 5.4 Poisson Distribution
Difficulty: Medium
Learning Objective: 5.4: Solve problems involving the Poisson distribution using the Poisson formula and the Poisson table.
61. Assume that a random variable has a Poisson distribution with a mean of 5 occurrences per ten minutes. The number of occurrences per hour follows a Poisson distribution with λ equal to _________
a) 5
b) 60
c) 30
d) 10
e) 20
Ans:
Response: See section 5.4 Poisson Distribution
Difficulty: Hard
Learning Objective: 5.4: Solve problems involving the Poisson distribution using the Poisson formula and the Poisson table.
62. On Monday mornings, customers arrive at the coffee shop drive thru at the rate of 6 cars per fifteen-minute interval. Using the Poisson distribution, the probability that five cars will arrive during the next fifteen-minute interval is _____________.
a) 0.1008
b) 0.0361
c) 0.1339
d) 0.1606
e) 0.5000
Ans:
Response: See section 5.4 Poisson Distribution
Difficulty: Medium
Learning Objective: 5.4: Solve problems involving the Poisson distribution using the Poisson formula and the Poisson table.
63. On Monday mornings, customers arrive at the coffee shop drive thru at the rate of 6 cars per fifteen minute interval. Using the Poisson distribution, the probability that five cars will arrive during the next five minute interval is _____________.
a) 0.1008
b) 0.0361
c) 0.1339
d) 0.1606
e) 0.3610
Ans:
Response: See section 5.4 Poisson Distribution
Difficulty: Hard
Learning Objective: 5.4: Solve problems involving the Poisson distribution using the Poisson formula and the Poisson table.
64. The Poisson distribution is being used to approximate a binomial distribution. If n=30 and p=0.03, what value of lambda would be used?
a) 0.09
b) 9.0
c) 0.90
d) 90
e) 30
Ans: Response: See section 5.4 Poisson Distribution
Difficulty: Easy
Learning Objective: 5.4: Solve problems involving the Poisson distribution using the Poisson formula and the Poisson table.
65. The Poisson distribution is being used to approximate a binomial distribution. If n=60 and p=0.02, what value of lambda would be used?
a) 0.02
b) 12
c) 0.12
d) 1.2
e) 120
Ans:
Response: See section 5.4 Poisson Distribution
Difficulty: Easy
Learning Objective: 5.4: Solve problems involving the Poisson distribution using the Poisson formula and the Poisson table.
66. The number of bags arriving on the baggage claim conveyor belt in a 3 minute time period would best be modeled with the _________.
a) binomial distribution
b) hypergeometric distribution
c) Poisson distribution
d) hyperbinomial distribution
e) exponential distribution
Ans:
Response: See section 5.4 Poisson Distribution
Difficulty: Medium
Learning Objective: 5.4: Solve problems involving the Poisson distribution using the Poisson formula and the Poisson table.
67. The number of defects per 1,000 feet of extruded plastic pipe is best modeled with the ________________.
a) Poisson distribution
b) Pascal distribution
c) binomial distribution
d) hypergeometric distribution
e) exponential distribution
Ans:
Response: See section 5.4 Poisson Distribution
Difficulty: Medium
Learning Objective: 5.4: Solve problems involving the Poisson distribution using the Poisson formula and the Poisson table.
68. Which of the following conditions is not a condition for the hypergeometric distribution?
a) the probability of success is the same on each trial
b) sampling is done without replacement
c) there are only two possible outcomes
d) trials are dependent
e) n < 5%N
Ans:
Response: See section 5.5 Hypergeometric Distribution
Difficulty: Hard
Learning Objective: 5.5: Solve problems involving the hypergeometric distribution using the hypergeometric formula.
69. The hypergeometric distribution must be used instead of the binomial distribution when ______
a) sampling is done with replacement
b) sampling is done without replacement
c) n≥5% N
d) both b and c
e) there are more than two possible outcomes
Ans:
Response: See section 5.5 Hypergeometric Distribution
Difficulty: Hard
Learning Objective: 5.5: Solve problems involving the hypergeometric distribution using the hypergeometric formula.
70. The probability of selecting 2 baseball players and 3 basketball players for an intermural competition at a small sports camp would best be modeled with the _______.
a) binomial distribution
b) hypergeometric distribution
c) Poisson distribution
d) hyperbinomial distribution
e) exponential distribution
Ans:
Response: See section 5.5 Hypergeometric Distribution
Difficulty: Medium
Learning Objective: 5.5: Solve problems involving the hypergeometric distribution using the hypergeometric formula.
71. The probability of selecting 3 female employees and 7 male employees to win a promotional trip a company with 10 female and 50 male employees would best be modeled with the _______.
a) binomial distribution
b) hypergeometric distribution
c) Poisson distribution
d) hyperbinomial distribution
e) exponential distribution
Ans:
Response: See section 5.5 Hypergeometric Distribution
Difficulty: Medium
Learning Objective: 5.5: Solve problems involving the hypergeometric distribution using the hypergeometric formula.
72. Suppose an interdisciplinary committee of 3 faculty members is to be selected from a group consisting of 4 men and 5 women. The probability that all three faculty selected are men is approximately _______
a) 0.05
b) 0.33
c) 0.11
d) 0.80
e) 0.90
Ans:
Response: See section 5.5 Hypergeometric Distribution
Difficulty: Medium
Learning Objective: 5.5: Solve problems involving the hypergeometric distribution using the hypergeometric formula.
73. Suppose an interdisciplinary committee of 3 faculty members is to be selected from a group consisting of 4 men and 5 women. The probability that one male faculty and two female faculty are selected is approximately ______
a) 0.15
b) 0.06
c) 0.33
d) 0.48
e) 0.58
Ans:
Response: See section 5.5 Hypergeometric Distribution
Difficulty: Medium
Learning Objective: 5.5: Solve problems involving the hypergeometric distribution using the hypergeometric formula.
74. Aluminum castings are processed in lots of five each. A sample of two castings is randomly selected from each lot for inspection. A particular lot contains one defective casting; and x is the number of defective castings in the sample. P(x=0) is _______.
a) 0.2
b) 0.4
c) 0.6
d) 0.8
e) 1.0
Ans:
Response: See section 5.5 Hypergeometric Distribution
Difficulty: Medium
Learning Objective: 5.5: Solve problems involving the hypergeometric distribution using the hypergeometric formula.
75. Aluminum castings are processed in lots of five each. A sample of two castings is randomly selected from each lot for inspection. A particular lot contains one defective casting; and x is the number of defective castings in the sample. P(x=1) is _______.
a) 0.2
b) 0.4
c) 0.6
d) 0.8
e) 1.0
Ans:
Response: See section 5.5 Hypergeometric Distribution
Difficulty: Medium
Learning Objective: 5.5: Solve problems involving the hypergeometric distribution using the hypergeometric formula.
76. Circuit boards for wireless telephones are etched, in an acid bath, in batches of 100 boards. A sample of seven boards is randomly selected from each lot for inspection. A batch contains two defective boards; and x is the number of defective boards in the sample. P(x=1) is _______.
a) 0.1315
b) 0.8642
c) 0.0042
d) 0.6134
e) 0.6789
Ans:
Response: See section 5.5 Hypergeometric Distribution
Difficulty: Hard
Learning Objective: 5.5: Solve problems involving the hypergeometric distribution using the hypergeometric formula.
77. Circuit boards for wireless telephones are etched, in an acid bath, in batches of 100 boards. A sample of seven boards is randomly selected from each lot for inspection. A particular batch contains two defective boards; and x is the number of defective boards in the sample. P(x=2) is _______.
a) 0.1315
b) 0.8642
c) 0.0042
d) 0.6134
e) 0.0034
Ans:
Response: See section 5.5 Hypergeometric Distribution
Difficulty: Hard
Learning Objective: 5.5: Solve problems involving the hypergeometric distribution using the hypergeometric formula.
78. Circuit boards for wireless telephones are etched, in an acid bath, in batches of 100 boards. A sample of seven boards is randomly selected from each lot for inspection. A particular batch contains two defective boards; and x is the number of defective boards in the sample. P(x=0) is _______.
a) 0.1315
b) 0.8642
c) 0.0042
d) 0.6134
e) 0.8134
Ans:
Response: See section 5.5 Hypergeometric Distribution
Difficulty: Hard
Learning Objective: 5.5: Solve problems involving the hypergeometric distribution using the hypergeometric formula
79. Ten policyholders file claims with CareFree Insurance. Three of these claims are fraudulent. Claims manager Earl Evans randomly selects three of the ten claims for thorough investigation. If x represents the number of fraudulent claims in Earl's sample, P(x=0) is _______________.
a) 0.0083
b) 0.3430
c) 0.0000
d) 0.2917
e) 0.8917
Ans:
Response: See section 5.5 Hypergeometric Distribution
Difficulty: Hard
Learning Objective: 5.5: Solve problems involving the hypergeometric distribution using the hypergeometric formula
80. Ten policyholders file claims with CareFree Insurance. Three of these claims are fraudulent. Claims manager Earl Evans randomly selects three of the ten claims for thorough investigation. If x represents the number of fraudulent claims in Earl's sample, P(x=1) is _______________.
a) 0.5250
b) 0.4410
c) 0.3000
d) 0.6957
e) 0.9957
Ans:
Response: See section 5.5 Hypergeometric Distribution
Difficulty: Hard
Learning Objective: 5.5: Solve problems involving the hypergeometric distribution using the hypergeometric formula
81. If sampling is performed without replacement, the hypergeometric distribution should be used. However, the binomial may be used to approximate this if _______.
a) n > 5%N
b) n < 5%N
c) the population size is very small
d) there are more than two possible outcomes of each trial
e) the outcomes are continuous
Ans:
Response: See section 5.5 Hypergeometric Distribution
Difficulty: Hard
Learning Objective: 5.5: Solve problems involving the hypergeometric distribution using the hypergeometric formula.
82. One hundred policyholders file claims with CareFree Insurance. Ten of these claims are fraudulent. Claims manager Earl Evans randomly selects four of the one hundred claims for thorough investigation. If x represents the number of fraudulent claims in Earl's sample, x has a _______________ distribution.
a) continuous
b) normal
c) binomial
d) hypergeometric
e) exponential
Ans:
Response: See section 5.5 Hypergeometric Distribution
Difficulty: Medium
Learning Objective: 5.5: Solve problems involving the hypergeometric distribution using the hypergeometric formula.
83. One hundred policyholders file claims with CareFree Insurance. Ten of these claims are fraudulent. Claims manager Earl Evans randomly selects four of the one hundred claims for thorough investigation. If x represents the number of fraudulent claims in Earl's sample, x has a _______________.
a) normal distribution
b) hypergeometric distribution, but may be approximated by a binomial
c) binomial distribution, but may be approximated by a normal
d) binomial distribution, but may be approximated by a Poisson
e) exponential distribution
Ans:
Response: See section 5.5 Hypergeometric Distribution
Difficulty: Medium
Learning Objective: 5.5: Solve problems involving the hypergeometric distribution using the hypergeometric formula
- @
- 165 orders completed
- ANSWER
-
Tutor has posted answer for $35.00. See answer's preview
***** **** Chapter ** ******** ******************************** ********* ***** **** ** ****** **** at certain ****** **** * given ******** are ****** continuous ****** *************** ************** *** section 51 Discrete versus ********** ************************ ************ ********** *** ****** * ****** variable ** ***** to ************* ******* * ******** ************ *** * ********** ******************* A ******** **** can **** ** ****** ** *** ***** **** a given interval ** ****** * ******** ****** variable Ans: FalseResponse: See section ** ******** ****** ********** ************************ EasyLearning ********** *** ****** * ****** variable ** ***** ** differentiate ******* * discrete ************ *** * ********** ******************* *** ****** ** ******** ** * ******* **** *** ** ** ******* ** * discrete ****** ************** TrueResponse: *** section ** Discrete versus ********** ************************ ************ ********** *** ****** * ****** ******** ** ***** to ************* ******* a ******** ************ *** * continuous ******************* *** ****** ** time * ******* ***** in * ******** office ** ** ******* ** * continuous random variable Ans: ************* *** ******* 51 Discrete ****** ********** ************************ EasyLearning ********** 51: ****** * ****** variable ** order ** differentiate ******* a ******** ************ *** * ********** ******************* *** **** ** *** ******** ***** ** a ******** ************ ** *** ******** ******* ** *** ***************** TrueResponse: See ******* ** ********** a ******** *********************** EasyLearning ********** 52: ********* *** **** ******** *** ******** deviation ** * ******** distribution 6 To ******* *** ******** ** * ******** distribution ** ** *** ********* ** **** the **** of *** distribution Ans: ************** *** ******* ** ********** * ******** DistributionDifficulty: MediumLearning ********** 52: ********* *** mean ******** *** ******** deviation ** * ******** ***************** *** ******** of * ******** distribution ********* ** ** *** * ******** constant to **** *** of its *********** ************** *** ******* ** ********** * ******** *********************** ************** ********** *** ********* *** mean ******** *** standard ********* ** a ******** ***************** In a ******** ********** *** ****** trial ******** **** two ******** ******** and ********** ****** *** ***************** ************* *** ******* 53 ******** *********************** MediumLearning ********** 53: Solve problems ********* the binomial distribution using the ******** ******* *** *** ******** table 9 In a ******** ************ p *** *********** ** getting a ********** ******* ** any ****** ***** increases *************** with ***** ******* ****** ************** *** section ** Binomial *********************** ************** ********** 53: ***** ******** ********* the ******** ************ ***** *** ******** formula *** *** binomial ************* *** ********** of independent ****** in a binomial ************ ** *** * ***** ******* if *** ****** **** ** ******* **** 1/20th ** *** ********** ********** TrueResponse: *** ******* ** Binomial *********************** MediumLearning Objective: *** ***** ******** ********* *** binomial ************ ***** *** ******** ******* *** *** ******** ************* *** * ******** ************ ** ***** the *********** ** success ** p = 05 *** ******** ** ***** *** ********** ************** *** ******* ** ******** *********************** ************ ********** *** ***** problems involving the binomial ************ ***** *** binomial ******* *** *** ******** table 12 *** ******* distribution is * ********** ************ ***** ** very useful ** solving ******* **** ************** FalseResponse: See ******* ** ******* *********************** ************ ********** *** Solve problems involving *** ******* ************ ***** *** ******* ******* *** *** ******* table 13 **** *** ******* *** *** ******** distributions are ******** ************* and both **** * ***** number of trials Ans: ************** See ******* ** Poisson *********************** MediumLearning ********** *** ***** ******** ********* *** ******* distribution using *** ******* ******* *** *** ******* table 14 *** ******* ************ is **** suited ** ******** occurrences ** **** ****** in * ********* ***** **** ********** ** independent ** *** ***** occurrences Ans: TrueResponse: See ******* ** ******* *********************** ************ ********** 54: ***** ******** involving *** Poisson distribution ***** *** Poisson ******* and *** ******* table 15 *** the ******* ************ *** mean ********** ***** the ***** ** *** ******** *************** FalseResponse: See section ** ******* *********************** EasyLearning ********** *** ***** problems ********* the ******* ************ ***** the ******* ******* *** *** ******* ************* * ******** distribution is ****** than a Poisson distribution ** describe *** ********** ** ***** *** ****** in the **** of ************ ************** See ******* 54 ******* *********************** ************** Objective: 54: ***** problems involving the Poisson distribution using the Poisson formula *** *** Poisson table 17 *** *** Poisson ************ *** **** *** *** ******** *** the ********** ************* See ******* 54 Poisson *********************** ************ ********** *** Solve ******** ********* *** ******* distribution using the ******* formula *** the ******* table 18 ******* ************ ********* *** occurrence of discrete events **** *** occur **** * ********** interval ** **** or *********** ************* See section 54 ******* *********************** ************ ********** *** Solve ******** ********* the Poisson ************ ***** the ******* ******* *** the ******* ******* A ******* distribution ** ************* by *** parameter Ans: ************* See ******* ** ******* *********************** ************** ********** *** ***** problems ********* *** ******* distribution ***** *** ******* formula and *** ******* *********** * ************** ************ ******* ** *********** ** ***** the ****** ********* sampling **** replacement Ans: ************** *** ******* ** ************** *********************** EasyLearning Objective: *** ***** ******** involving *** ************** ************ ***** the ************** formula 21 As ** * binomial ************ **** ***** ** * hypergeometric ************ ******* ** *** of *** ******** exclusive ******** ** ****** * success or * failure Ans: ************* *** ******* 55 ************** *********************** ************** ********** 55: ***** problems involving the ************** distribution using the ************** *************** The ****** ** ********* in a hypergeometric ************ is ************* ************** See ******* ** Hypergeometric *********************** HardLearning ********** *** Solve problems ********* the ************** ************ ***** *** ************** formula 23 ** a ************** distribution the ********** * ** finite *** known Ans: ************* *** ******* ** ************** *********************** ************ ********** 55: ***** ******** involving the ************** ************ ***** *** hypergeometric *********************** ************** *** ****** ** ****** ** ** ******** ******** *** ** paint ** ** example of *********** *** binomial distributionb) **** discrete *** continuous ********** a continuous random ********** a ******** ****** variablee) * ************** ********** *** ******* ** ******** ****** Continuous ************************ ************** ********** 51: ****** * random ******** in ***** ** ************* ******* * ******** ************ *** a ********** distribution 25 *** ****** ** ******* ****** ****** *** ****** ** ******** is ** ******* ** _______a) a ******** ****** ********** * ********** ****** variablec) the Poisson distributiond) *** ****** ************** * ************** ********** *** ******* ** ******** ****** Continuous ************************ ************ ********** *** Define * ****** ******** ** ***** ** differentiate ******* a ******** distribution *** * ********** ****************** The ***** at which * *** plane can *** is an example of *********** ******* ******** *** ********** ****** variableb) **** ******** *** ********** random ********** a ********** ****** ********** a ******** random variablee) a ************** ********** *** ******* ** Discrete ****** Continuous ************************ ************** ********** *** ****** * ****** ******** in ***** ** differentiate between * discrete distribution and * ********** distribution 27 In ******** Roulette ***** *** two zeroes *** 36 ******** ******* *** *** *** ** ****** ** * player bets * unit on red *** ****** ** ******* * unit ** therefore ***** *** *** ****** of ****** * **** (or ******* -1) ** 20/38 *** * ** *** ****** ****** per **** *** **** ********* ***** ** x ** approximately_______________a) 00526b) -00526c) *** **** ******* ********** See section ** ********** a ******** DistributionDifficulty: EasyLearning Objective: *** ********* *** mean ******** *** standard deviation of * discrete ****************** * recent analysis ** *** ****** of ***** days *** ***** ***** *** ********* ******** *** ******************* ** Raining **** ******************* **** ** this distribution is _____________a) *** 3c) *** *** *********** ********** See ******* ** Describing * ******** DistributionDifficulty: EasyLearning ********** *** ********* *** mean variance *** ******** ********* ** * discrete ******************* ****** ******** of *** ****** of rainy **** *** month ***** *** ********* outcomes and probabilitiesNumber ** Raining Days ******************* ******** deviation ** **** ************ is _____________a) ***** ***** ***** ***** ********* ********** *** ******* ** Describing * ******** *********************** ************ Objective: *** ********* *** **** ******** *** ******** ********* ** * ******** ************** *** *** offered ** ********** *********** *** outcomes *** ************* *** ********* ** the ********* *********************************** ** the ********* statements is ******* **** ************ is ****** ** *** ******* **** ** * ******** ************** This distribution is symmetricd) This ************ ** ****** ** the ****** This ** * ******* distribution Ans: ********** *** ******* ** ********** * ******** *********************** ************ ********** *** ********* the mean ******** and ******** deviation of * discrete ******************** * ****** ******** team ******** the ********* ******** *********** ************ ** *** ****** ** sodas *** ******* adult ****** **** *** ** **** ************ x ********** *** ****** ** sodas which an ***** ****************************** **** ********* value ** x ** ***************** 14b) ***** ***** ***** 302 Ans: ********** *** ******* ** ********** * ******** DistributionDifficulty: ************ ********** *** ********* *** **** ******** and ******** ********* ** * ******** distribution 32A ****** research **** ******** *** ********* discrete probability ************ on *** ****** of ***** the average ***** drinks **** *** In **** ************ * ********** the number of ***** which ** adult ****************************** ******** ********* ** * ** ***************** ***** ***** ***** ***** 588 Ans: ********** *** ******* ** Describing * Discrete *********************** EasyLearning ********** 52: ********* the **** ******** *** ******** deviation ** a discrete ******************** * market ******** **** ******** *** ********* ******** probability ************ ** **** distribution * ********** *** ****** ** automobiles ***** ** * ******************************** ** *** ********* ********** is ******* **** ************ ** ****** ** the rightb) **** ** * ******** distributionc) **** ** * ****** ************** **** distribution ** ****** ** *** ****** **** ************ is ************* dResponse: *** ******* ** ********** * ******** *********************** ************ Objective: *** ********* *** **** ******** *** standard ********* ** * ******** ******************** * ****** ******** team ******** *** ********* discrete *********** ************ for families residing ** ******** ****** ** **** distribution * represents *** ****** ** ******** *** ****** ***** ******* ***** **** ****** * weekxP(x)0030105020103010The mean (average) value ** * ** _______________a) **** **** **** **** ******** ********** *** ******* 52 ********** * ******** *********************** ************ ********** *** Determine *** **** ******** *** ******** ********* ** * discrete ******************** * ****** ******** **** ******** *** ********* ******** probability distribution for ******** ******** ** Randolph ****** ** this ************ * ********** *** ****** ** ******** *** ****** dines ******* their **** ****** a **************************** ******** ********* of * ** ***************** ***** ***** 080d) ***** ********* dResponse: *** ******* ** ********** a ******** DistributionDifficulty: ************ ********** *** ********* *** mean variance *** ******** ********* ** * ******** distribution 36 If x has a ******** distribution **** p = * **** *** ************ ** * is ********** skewed ** *** rightb) ****** ** the ****** *********** * ******* ************** a hypergeometric ****************** cResponse: See section 53 Binomial *********************** ************ Objective: 53: ***** ******** involving *** ******** ************ using *** ******** formula *** the ******** ************* *** ********* ***** is * ******** distribution with * = ************************* ***** ******* that ____________a) * > **** * = **** * = *** * **** **** * * ******** aResponse: *** ******* ** Binomial DistributionDifficulty: ************** ********** *** ***** ******** involving *** ******** ************ ***** *** ******** ******* and *** binomial ************* *** ********* ***** ** a ******** ************ **** * = ************************* ***** reveals that ************** * **** **** p * 10c) p * *** * **** 05e) p * 15 Ans: dResponse: See ******* ** ******** *********************** ************** ********** 53: ***** ******** involving *** binomial ************ ***** the binomial formula and *** ******** ************* *** following graph ** * binomial ************ **** * * ************************* ***** reveals **** ____________a) * * **** * * **** * * *** p **** 05e) * = ******** aResponse: *** ******* 53 ******** DistributionDifficulty: ************** Objective: *** ***** problems involving the ******** ************ using the ******** ******* *** the binomial *********** If * ** a binomial ****** ******** with **** *** **** *** **** ***** ** * ** ******* 6b) **** 32d) *** 48 Ans: ********** *** ******* 53 Binomial DistributionDifficulty: MediumLearning ********** 53: ***** ******** ********* *** binomial ************ ***** *** ******** formula *** the ******** ************* ** * ** * ******** random ******** **** **** *** **** *** ******** ********* ** * is _________a) **** ***** 160d) ***** ******** ********** *** section ** Binomial *********************** ************** ********** 53: ***** problems involving *** ******** ************ ***** *** ******** ******* *** the ******** table 42 ** * ** a binomial random ******** **** **** and p=08 what ** *** *********** **** x is ***** ** 4?a) 0055b) 0063c) 124d) ***** ********* ********** *** section ** Binomial *********************** ************** ********** *** ***** ******** ********* *** ******** ************ using the ******** ******* and *** ******** *********** ****** **** *********** *** ******** ******** out ** *** ******** ******* * ***** bedding ***** Each ******* *** ***** ** **** made * purchase ****** ***** ***** **** ** *** ******** *** the **** *********** ** ********* ********* ** ****** made * ******** *** *********** that exactly **** ** *** *********** ******** made * purchase ***** **** be ***** ** ********* ***** the ****** ************** ***** the ******** ************** ***** *** ******* ************** using *** exponential ************** ***** *** uniform distribution Ans: bResponse: *** ******* ** ******** DistributionDifficulty: ************** ********** *** ***** problems ********* *** binomial distribution ***** the ******** formula and *** binomial *********** During * ****** sporting event * quarter ** tossed ** determine ***** **** ***** the ******** **** ******* the ******* **** *** **** **** ** tossed 3 times *** *** **** *** *** of ***** wins ** **** * calls *********** **** ** *** *********** **** ******* *** ***** *** ******** in ***** tosses?a) 313b) ******* ***** ***** 500 Ans: bResponse: *** ******* ** ******** *********************** ************** ********** *** ***** ******** involving *** ******** ************ using *** ******** ******* *** *** ******** *********** A student ******** ******* *** ******* ** a **** ******** ********** test If ***** ** * *** ****** ** ******** correctly ** **** ******** **** is *** *********** that *** ******* ****** ******* * *********** ****** ****** ****** 0073e) ********** ********** *** ******* ** ******** DistributionDifficulty: ************** ********** *** ***** problems ********* *** binomial ************ ***** the ******** formula and *** ******** table 46 * ******* ******** ******* the ******* ** a **** ******** ********** **** ** there is * *** ****** ** guessing ********* ** **** ******** **** ** *** *********** that *** ******* ****** ** questions?a) ****** 0200c) 0500d) 0031e) ********** ********** *** ******* ** ******** *********************** ************** ********** *** Solve ******** involving the ******** ************ ***** the ******** ******* *** *** ******** *********** ***** ***** ***** ********* Officer ** ******** ******* Inc ******** ************** ** *** ******* ****** *** orders ** ********** ** * random ****** ** ******** ****** ***** ******* * **** A ****** ** *** vouchers is ******** ******** ******* *********** **** *** ********** of **** vouchers Each ******* ** the ****** ** ******** *** ****** *** the number of ******** ** *** ****** **** ****** is ******* ** * ** *** ** *** ********** of ******** ******* ****** *** = ** is ***************** ******* ******* 08926d) ******* 02000 Ans: bResponse: See ******* ** ******** DistributionDifficulty: MediumLearning ********** *** ***** ******** ********* *** ******** distribution using *** ******** ******* *** *** binomial ************* ***** ***** ***** ********* ******* ** ******** ******* Inc ******** irregularities in the ******* ****** *** orders ** ********** of * ****** ****** of vouchers ****** ***** ******* * **** * ****** ** *** vouchers ** randomly selected without *********** **** *** ********** ** 2000 ******** **** ******* ** the sample is examined *** ****** *** *** ****** ** ******** ** the ****** **** ****** ** denoted ** * ** *** of *** population ** vouchers contain errors ********* is ***************** ******* 01074c) 08926d) ******* *********** ********** *** ******* ** Binomial *********************** ************** ********** 53: ***** ******** ********* the ******** ************ ***** *** binomial ******* *** the ******** ************* ***** ***** ***** Financial ******* ** Harrison ******* *** ******** irregularities ** *** payroll ****** and ****** ** ********** of a ****** ****** ** ******** issued since ******* * **** A ****** of *** ******** ** ******** ******** ******* *********** from the ********** ** **** vouchers **** ******* in *** ****** ** ******** *** errors *** *** ****** ** ******** in the ****** **** errors is ******* by x ** *** of *** ********** ** ******** ******** errors *** mean value of x ** ************ ***** 2c) ***** *** ******* ********** *** ******* 53 ******** *********************** ************** Objective: 53: Solve problems ********* the ******** ************ using *** ******** ******* and the ******** table 50 ***** Bauer ***** ********* Officer ** ******** Haulers Inc ******** ************** in *** payroll ****** and ****** ** ********** ** a random ****** ** ******** issued ***** ******* * 2006 * sample ** ten vouchers is ******** ******** without *********** **** *** ********** ** 2000 ******** **** voucher ** *** ****** is examined *** ****** and *** number ** ******** in the ****** with ****** ** ******* ** * ** *** ** *** ********** of vouchers contains errors *** ******** ********* ** * ** ******** ***** ***** ****** ***** ********* ********** *** section ** Binomial *********************** ************** Objective: *** ***** ******** involving the ******** ************ ***** the binomial ******* *** the binomial ************* Dorothy Little purchased * mailing **** ** **** ***** *** addresses *** *** mail order ******** *** ***** ******** the **** *** ****** *** authenticity ** *** **** *** ******** ******* **** ***** **** *** list *** ********** ** 40% of *** ***** ** *** **** *** ************* *** x ** the number of non-authentic names ** *** sample ****** ** ______________a) ******* 00467c) ******* ******* *********** cResponse: See ******* ** ******** *********************** ************** Objective: 53: ***** ******** ********* *** ******** ************ ***** *** binomial ******* *** *** ******** table 52 Dorothy Little ********* a ******* **** of 2000 ***** *** addresses *** *** **** ***** business *** ***** scanning *** **** *** ****** *** authenticity ** the **** She randomly ******* **** ***** **** *** **** *** validation If *** of *** ***** on *** **** *** ************* *** * is *** ****** ** ************* names ** *** sample P(x<2) ** **************** ******* ******* ******* ******* *********** aResponse: *** ******* ** Binomial *********************** ************** Objective: *** ***** problems involving the ******** distribution using *** ******** ******* *** *** ******** table 53 ******* ****** ********* * ******* **** ** **** names *** ********* *** her **** ***** ******** *** ***** ******** *** **** *** ****** *** ************ of *** list *** randomly selects five ***** **** *** **** for validation ** 40% ** *** ***** ** *** **** *** ************* and x ** the ****** ** ************* ***** ** *** ****** ********* ** **************** ******* ******* 01846d) 09222e) *********** ********** *** section ** ******** DistributionDifficulty: ************** ********** *** ***** problems involving the binomial ************ using *** ******** ******* and *** binomial table 54 Dorothy ****** purchased a mailing **** ** 2000 names and addresses *** *** **** order ******** *** ***** scanning *** **** *** ****** *** authenticity ** *** **** *** ******** selects **** ***** **** *** list for ********** ** *** of *** ***** ** *** **** *** ************* and * ** *** ****** on non-authentic names ** *** ****** *** ******** ********* value ** x ** **************** 250b) ***** ***** 125e) ********* ********** *** ******* ** Binomial *********************** ************** ********** 53: ***** problems ********* *** binomial ************ using the ******** ******* and *** ******** *********** A ***** ********** firm ****** a ******** on *** ******* that ** **** ****** ** days ** *** ******** 10% receive the ******** ** * company ***** ** ******** *** sampled ** random *** *********** **** fewer than 3 ** *** ** sampled ******** receive *** discount is ****************************** ******* ****** 0001d) ******* *********** eResponse: See ******* ** Binomial *********************** ************ Objective: *** Solve ******** involving the ******** distribution ***** *** ******** formula *** *** ******** *********** * ***** ********** **** allows a ******** ** *** ******* that ** **** ****** ** **** ** *** ******** *** receive *** ******** In * ******* ***** ** ******** *** ******* at ****** *** **** (average) ***** ** *** number of *** 15 ******* ******** **** receive ******** is ********* *** *** **** 2e) ******** ********** *** section ** Binomial DistributionDifficulty: MediumLearning ********** 53: ***** ******** ********* the ******** ************ ***** *** ******** ******* and the ******** ************* ** * ******* ************** system ***** ** ** average ** 1 transmission ***** *** 10 ******* ****** **** *** distribution ** ************ ****** ** ******* *** probability ** * error ** a ****** of ******** ****** ** ************* ********** ******* 03333c) ******* ******* ********* aResponse: See section 54 ******* *********************** HardLearning ********** *** ***** problems ********* *** Poisson distribution ***** the ******* ******* and the ******* table 58 ** ** ***** **** ****** ******** ** * ******* ******* will ** ********* with *********** ** ************* ** **** ***** The ******* ***** *** ****** ** ******** of 25 and ****** a money-back ********* that ** most * ** *** 25 ****** is defective Using ******* ************* *** ******** ************ *** *********** **** *** company **** ******* * package ** ************* _________a) ***** ******* ******* ******* *********** ********** *** section ** ******* DistributionDifficulty: ************ ********** *** ***** ******** ********* the ******* ************ ***** the ******* ******* *** *** ******* table 59 The ****** ** **** ******** ** * **** ***** in *********** intervals ** ******* *********** **** * mean ** 3 **** ******** ** five-minute time intervals The probability of 5 cars ******** over a five-minute ******** is ********* ******* 00417c) ******* ******* *********** dResponse: See ******* ** ******* *********************** MediumLearning ********** *** ***** ******** ********* *** Poisson ************ using *** Poisson formula *** *** Poisson ************* *** ****** ** cars arriving ** * toll booth ** *********** ********* is ******* *********** **** * mean ** 3 **** ******** ** five-minute time ********* *** probability of * **** arriving **** a *********** ******** ** _______a) ******* 00498c) ******* 00001e) *********** ********** See ******* ** ******* *********************** ************** ********** *** ***** ******** ********* the Poisson distribution ***** *** ******* ******* *** *** Poisson table 61 ****** that * random variable *** * ******* ************ **** * mean ** * occurrences *** *** ******* *** ****** ** *********** per **** follows * ******* ************ **** λ ***** to *********** 5b) 60c) **** **** ******** ********** See ******* ** ******* DistributionDifficulty: ************ ********** 54: ***** problems involving the ******* ************ using *** ******* formula *** the ******* table 62 ** ****** ******** ********* ****** ** *** ****** **** ***** **** ** *** **** of 6 cars per fifteen-minute ******** ***** *** ******* ************ *** *********** **** five **** will ****** ****** *** **** ************** ******** ** _____________a) ******* 00361c) ******* 01606e) 05000 Ans: ********** *** section ** ******* *********************** ************** Objective: *** ***** problems involving *** Poisson distribution ***** the ******* ******* *** the Poisson ************* ** ****** ******** customers ****** ** *** ****** **** ***** **** at the rate of * cars per ******* ****** ******** Using the ******* ************ *** *********** **** **** **** **** arrive ****** *** **** **** ****** interval ** *************** ******* ******* 01339d) 01606e) 03610 Ans: ********** See section 54 ******* *********************** HardLearning Objective: *** ***** ******** ********* *** ******* ************ using *** ******* ******* and *** Poisson ************* The Poisson ************ ** being **** ** *********** a ******** ************ If **** *** ***** what ***** ** lambda ***** ** ******* ***** **** 090d) 90e) ******** cResponse: *** section ** Poisson *********************** ************ ********** 54: ***** ******** involving *** ******* distribution ***** *** ******* ******* *** the Poisson ************* *** ******* ************ ** ***** used ** *********** * ******** ************ If **** *** p=002 **** value ** lambda ***** be ******* ***** **** ***** **** ********* ********** See ******* ** ******* *********************** ************ ********** 54: Solve ******** involving the ******* ************ ***** *** ******* ******* *** *** ******* table 66 The ****** ** **** ******** ** *** ******* ***** ******** belt ** * 3 ****** time ****** ***** **** ** modeled **** the _________a) ******** ************** hypergeometric ************** ******* distributiond) ************* ************** *********** distribution Ans: ********** *** ******* 54 Poisson DistributionDifficulty: MediumLearning ********** *** ***** ******** involving *** Poisson ************ using *** Poisson formula *** the ******* ************* The ****** of ******* *** **** feet ** ******** plastic **** is best ******* with *** ****************** ******* distributionb) ****** ************** binomial distributiond) ************** distributione) *********** ****************** ********** See ******* 54 Poisson DistributionDifficulty: ************** ********** *** ***** ******** involving *** ******* distribution ***** *** Poisson formula *** *** ******* ************* ***** ** *** ********* conditions ** not a condition for *** ************** *************** *** probability of success ** *** **** ** each ******* ******** is **** ******* ************* there *** **** *** possible ********** ****** *** *********** * **** ********* aResponse: *** ******* ** ************** *********************** ************ Objective: *** ***** ******** ********* *** hypergeometric distribution ***** *** ************** *************** The hypergeometric ************ **** ** **** instead ** the ******** distribution when ******** sampling is done **** replacementb) sampling ** done without ************* ****** *** **** * and *** there *** more than *** possible **************** dResponse: *** ******* ** ************** DistributionDifficulty: ************ ********** 55: Solve ******** ********* *** ************** ************ ***** the hypergeometric ***************** *** *********** ** ********* * baseball ******* *** 3 ********** players for ** ********** competition ** a small sports **** ***** **** be modeled with *** ********* ******** ************** ************** distributionc) Poisson ************** hyperbinomial ************** *********** ****************** ********** *** ******* ** Hypergeometric *********************** ************** ********** 55: ***** ******** ********* the ************** ************ ***** *** hypergeometric *************** The *********** ** ********* 3 ****** ********* *** * **** ********* ** win * promotional **** * ******* **** ** ****** *** ** male ********* ***** best be modeled **** *** ********* ******** distributionb) ************** ************** Poisson ************** ************* distributione) exponential ****************** bResponse: *** section 55 ************** *********************** ************** ********** *** ***** problems ********* *** hypergeometric distribution ***** the hypergeometric *************** ******* ** interdisciplinary committee ** * ******* ******* ** ** ** ******** from * ***** consisting ** * men and * women The *********** **** *** ***** ******* ******** *** *** is approximately ********* ***** 033c) ***** 080e) ********* aResponse: *** section ** ************** *********************** ************** ********** 55: Solve ******** ********* *** ************** distribution ***** *** ************** ***************** ******* an ***************** ********* ** 3 faculty members ** ** ** ******** **** a group ********** ** 4 *** *** * ***** *** *********** **** one **** faculty *** *** ****** ******* *** ******** is ************* ______a) ***** 006c) ***** 048e) ********* ********** *** ******* 55 ************** *********************** ************** Objective: 55: ***** ******** involving *** ************** ************ using *** ************** formula 74 ******** ******** are processed ** **** ** **** each A ****** ** *** ******** ** randomly ******** from **** lot *** inspection * particular *** ******** *** ********* casting; and x is *** ****** ** ********* ******** ** *** sample ****** ** _______a) **** **** **** **** 10 Ans: ********** *** ******* ** ************** DistributionDifficulty: ************** Objective: *** Solve problems ********* the ************** ************ ***** the ************** *************** ******** ******** *** ********* ** **** ** five **** * ****** of *** castings ** ******** selected from **** lot *** ********** * ********** *** ******** *** ********* ******** *** * ** *** ****** ** defective castings ** the ****** ****** ** ********* 02b) **** **** 08e) ******** bResponse: *** ******* 55 Hypergeometric *********************** MediumLearning ********** 55: Solve ******** ********* *** ************** ************ ***** *** ************** *************** ******* boards *** wireless ********** are ****** ** ** **** **** ** ******* ** *** boards * sample of ***** ****** ** ******** ******** **** **** lot for ********** A ***** contains *** ********* boards; and * ** *** ****** ** defective ****** ** *** sample ****** ** _______a) ******* ******* 00042d) ******* 06789 Ans: aResponse: *** ******* ** Hypergeometric *********************** ************ Objective: *** ***** ******** ********* the hypergeometric ************ ***** the ************** *************** ******* ****** *** ******** ********** *** etched ** ** **** **** in ******* of *** boards * sample of seven ****** ** randomly ******** **** **** *** *** inspection * ********** ***** ******** *** ********* ******* and * ** *** number of ********* ****** ** the ****** ****** ** _______a) 01315b) ******* ******* ******* *********** ********** See ******* 55 ************** *********************** HardLearning ********** *** ***** problems ********* the ************** distribution ***** *** ************** *************** ******* boards *** ******** ********** *** etched ** ** acid **** ** ******* ** *** boards * ****** ** ***** ****** ** randomly ******** from **** lot for ********** * ********** ***** ******** *** ********* ******* *** x ** *** ****** ** ********* ****** ** *** sample P(x=0) ** _______a) ******* ******* ******* ******* 08134 Ans: ********** *** ******* ** Hypergeometric *********************** HardLearning Objective: *** Solve ******** ********* *** ************** ************ ***** the ************** ********* *** ************* **** ****** **** ******** ********* ***** of these ****** *** fraudulent ****** ******* Earl ***** ******** ******* three ** the *** ****** for thorough investigation ** x represents *** number ** ********** ****** in ****** sample ****** is ***************** ******* ******* ******* ******* *********** dResponse: *** ******* ** ************** *********************** ************ ********** *** ***** ******** ********* *** ************** ************ ***** *** hypergeometric formula 80 *** ************* **** ****** with CareFree ********* Three ** ***** ****** *** fraudulent ****** ******* **** ***** randomly selects ***** ** *** *** ****** for ******** ************* ** * ********** *** ****** of ********** claims ** ****** ****** ****** ** ***************** 05250b) ******* ******* 06957e) *********** aResponse: *** section ** ************** DistributionDifficulty: ************ ********** *** Solve ******** involving *** ************** distribution ***** *** hypergeometric *************** If sampling ** ********* ******* *********** *** ************** distribution ****** ** **** However *** ******** *** ** **** to *********** **** if ********* * **** ***** * **** 5%Nc) *** ********** **** ** **** ******* ***** *** **** **** *** possible ******** of **** ******* the ******** are **************** ********** *** section ** ************** DistributionDifficulty: ************ ********** 55: ***** ******** ********* *** ************** ************ using *** hypergeometric *************** *** ******* ************* **** ****** **** ******** ********* Ten ** ***** ****** are fraudulent Claims manager **** ***** ******** ******* four of *** *** ******* ****** *** thorough investigation ** * ********** *** ****** ** ********** ****** in ****** ****** * *** * *************** ************** continuousb) normalc) ********** hypergeometrice) ***************** ********** *** ******* 55 Hypergeometric DistributionDifficulty: ************** ********** 55: ***** problems ********* *** hypergeometric ************ ***** the ************** *************** *** ******* policyholders **** claims **** ******** Insurance *** ** ***** claims are ********** ****** manager **** ***** ******** selects four ** the *** ******* ****** *** ******** ************* ** x ********** *** ****** ** ********** claims ** Earl's ****** * has * _______________a) ****** distributionb) ************** ************ *** may ** ************ by * ********** ******** distribution *** may ** ************ ** * normald) ******** ************ but may ** approximated ** * ********* *********** ****************** ********** *** ******* 55 Hypergeometric *********************** ************** ********** 55: ***** ******** involving the ************** distribution ***** *** ************** ***********************