Integration by parts.

The tuitorial entails solving integrals using integration by parts.This metod of integration requires the first step to identify u & dv from the integral and this is achieved by applying the rule rule of the thumb using the acronym;LIATE whose letters represent five functions to be encountered in the integrals.

The tuitorial has explained in detail the creteria of choosing u & dv and aslo various sample problems showig how the formula can be applied.

At the end of the tuitorial is an exercise where you are provided with the clue to get you started and the answer for the question.Kindly practice the questions for more understanding of the topic.Note that practice makes perfect,and it is essential in understanding mathematics which would translate to high performance.Kinly check the file attached.

Wish you a successful tuitorial session.

Show more >
  • $30.00
    ANSWER
    Tutor has posted answer for $30.00. See answer's preview

    *********** ** ******* *** ********* equation using *********** by ***** ***** *** formula;= *** *** us **** ** the ********** *** ********* * *** dv-There *** ****** ********** but ***** are ********* *** *** ******* ********* ** a ***** ************* * to ** *** ******** that ***** ** this list ******* Logarithm ********** Inverse trig ********** ********* ********** ************* functionE: *********** ************** problem 1Integrate SolutionFrom the equation ** * ** * *********** ******** *** * ** ** ********* ******** ********* ** ******** * *** dv * * ****** * ***** ****** A in ******** * dx and ** * ************ *** * *** x)x2 * x2 ** * *** **** * (x3) * * = (In **** * ** * * ****************************************************************************** ******* 2SolveSolutionFrom *** ******** ** * ** a logarithmic ******** *** x ** ** ********* ******** Therefore ** ********* ** * *** * ****** * ***** ****** * ** ******** * (-tan ** ** *** ** *********** *** * *** *** ** ***** ** * (-tan ** dx * **** * (In cos ** - dx * -cos x *** *** ** - = **** x(In cos ** * *** * + C ……………………………………AnswerSample ******* ********** ************ ****** ** ******* **** *********** by parts **** not apply *** ***** = ******** **** ********* *** *** ********** ************ ******* ******* * * * ************ * *** * ** x2)-1dx * * **** ** ** - x2)1/2 ***** * * * * (+ () (1 * ****** (2) + * * x ** (1 * x2)1/2 + C ***************************************************************************** ******* guidelines for ********* * *** dv:1 *** * be **** section ** *** integrand ***** ********** ** ** a “simpler” ******** than * itself2 *** dv ** *** most *********** ******* ** the ********* that *** ** integrated ************ ******* 4Solve ** ** ********* ************* ***** rule ** thumb ******* ********** **** ***** **** x3 *** ** ********* are ********* ********* We apply **** * of the alternative guidelines ***** *** **** **** x (4 –x2)1/2 is *** **** ********* section of the ********* **** can ** easily ********** ************ = * ** ********* and * * x2 **** remaining ****** ** the ************** ***** **** ** * 2xdx ***** ** ********* ** ** ** –x2)1/2 *** *** ** (4 ********* * *** –x2)3/2We can now ***** our ********* (4 –x2)1/2 dx * *** = **** (-(4 –x2)3/2 ) * ** ********* **** ** * ***** ********* - (4 ********* () * * * ***** –x2)3/2 * ** –x2)5/2 * * ************************************************** ******** *********** ** *********** by ***************** *********** by ***** can be ******** ** ***** ** *** *** ***** ******** *** ******* ****** ** ***** ** *** substituting the ******* for u and ** in *** ********** ****************** ******* ********** x2 *** * ************** *** ******** *** x is * ************* ******** *** ** ** ** ********* ******** ********* we ******** *** ** **** *** ****** * comes ****** T ** ******** * 2x ** *** ** = **** ************ *** x ** = **** x2(-cos ** * = *** *** * +2Applying *********** ** ***** *** the ****** **** to ***** *** second **** of *** ******** above) and ********* the **** procedure of choosing * *** ***** ********** function) *** ** * *** * (trigonometric ******************* du= ** and v== *** *** sin * ** = -x2 *** * +2(uv-)= *** *** x **** *** x)= -x2 *** x **** *** * * *** x + C)= *** *** * *** *** * * **** * * * ***************************************************** ** important ** **** that *** ******** ******** * **** the ******** ******** should *** be ************* problem ****** ** *** * dxSolutionFrom *** ******** ** ** ** *********** function *** *** * is * trig-function ********* we ********* ** * ** (Since * ***** before * in LIATE)du * **** * dx *** **** dx = exThereforeex *** * *** uv-Cos * ** * ex ***** x) ***** * ** * ex *** * ********** integration ** ***** *** *** ****** **** ** ******** x ** * ** *** * ** *** ****** part of *** integral ****** *** ********* the **** ********* of choosing * *** **** sin * (Trigonometric ********* *** ** * ex ************ function)Therefore; *** *** * ** and **** dx= exex cos * dx= *** * ex * ******* *** * *** Cos x ** * *** * * ** cos * ***** ******** ******** ******* on the *** ** the ********* ********* we ******* **** ***** ** moving ** ** *** *** ** ********** *** * ** + ex *** * dx= ex *** * + *** x2ex *** * dx= ex *** * * *** * + *** *** * dx = *** *** * * *** ** + * ………………………………………………AnswerKinly ***** *** **** ********

    Click here to download attached files:

    Answers.docx

    Buy

Learn more effectively and get better grades!

Ask a Question