Answered You can buy a ready-made answer or pick a professional tutor to order an original one.
linear regression
Question
1. Run a minimum of 2 pearson correlation coefficients from the attached dataset (for example bench and 40 yard dash time; squat and 40 yard dash time). Generate scatterplots for both. Summarize the findings (r and P values most importantly). Do your hypothesis testing. Ho vs. Ha for each.
Question 2
Regardless of the P values on pearson, go ahead and do a regression/prediction for practice. (for example 40 yard dash time = Y; bench and squat would be m1 and m2 values; b is the Beta coefficient you will see after running the linear/multiple regression statistic. Then write out the formula. If the P value is <.05 for the regression then it is a valid and reliable predictive formula. Try it out with mock data like bench = 500 pounds and squat = 750 pounds. Does the 40 yard dash time prediction make sense (if P <.05 it should; if P >.05 it should not).
- @
- 11 orders completed
- ANSWER
-
Tutor has posted answer for $13.00. See answer's preview
******** * *** a minimum ** * ******* *********** ************ **** *** ******** dataset **** ******* ***** and ** **** dash ***** squat and ** yard **** ***** Generate ************ for **** Summarize *** ******** ** and P values most ************ ** your ********** ******* ** ** ** *** ************** **** WAS *** ** ************* *********** *********************************************** ****************** ************************************ Correlation1571Sig ********************** ******* ******************** * rho * *** : *** *** 0From *** *********** ***** * = ***** ** ************ ***** *** p value ** greater **** ************ ***** we ********* fail ** ****** *** **** ********** and state **** the *********** *********** ** ************* ***** to zero ie ***** ** no *********** ************ ******* ***** **** **** *** bench b) *********** ************************************************* ****************** ******************************** ****************** (2-tailed)061 N3030 Scatter plot HYPOTHESISH0 * rho * *** : rho *** 0From *** correlation ****** ** ***** ** ************ ***** *** p value ** ******* than significance ***** ** ********* **** ** ****** *** **** ********** *** ***** **** the correlation *********** ** statistically equal to zero ** there ** ** *********** relationship ******* *** ***** yard dash and *************** *********** ** *** P ****** on ******* ** ahead *** ** a ********************* *** practice **** ******* ** yard **** time * Y; bench *** ***** would ** m1 and ** ******* * ** *** **** coefficient *** **** see ***** ******* *** *************** regression ********* **** ***** out *** ******* If the * ***** is <05 *** the regression **** it is * ***** and ******** ********** formula *** ** *** with **** **** **** ***** * *** ****** and ***** = *** pounds Does the ** yard dash **** ********** make sense *** * ****** ** ******* ** P ****** ** ****** ***************** a ******** linear regression on SPSS with ********* ******** ** ** **** **** **** and ********* variables ** squash and ***** ** *** *** ********* ******************** Entered/RemovedaModelVariables **************** ******************* ************ Dependent ********* ********** *** requested ********* **************** ************** SquareAdjusted * ********* ***** of *** ************************* *********** ********** ***** *********************** ** ************* *************************************************************************** ********* ********* fortydashb *********** (Constant) ***** ***************************************** CoefficientsStandardized ******************** ******************************************************************************* Dependent Variable: ************** ********** ******* **** ** as ******* **** **** ***** **** ******** * *** ************** *** ************ we ***** **** **** **** = **** * ********* * *** ******* = 4232 * 0001squatAt *** ************ ***** *** p values *** the ****** and ***** ********** ************ are ******* **** *** ********* *** *** coefficients are insignificant **** ******* our ***** **************** *** **** ******* with * ***** ***** of *** ** get * ** **** **** **** ** **** ***** **** ** ********** ** ** ************* *******